Flow Field Data Mining of Pareto-Optimal Airfoils Using Proper Orthogonal Decomposition

Autor: Oyama, Akira, Verburg, Paul C., Nonomura, Taku, Hoeijmakers, Harry W.M., Fuji, Kozo, Muellner, George K.
Rok vydání: 2010
Předmět:
Zdroj: Proceedings 48th AIAA Aerospace Sciences Meeting 2010: Including the New Horizons Forum and Aerospace Exposition, 1-11
STARTPAGE=1;ENDPAGE=11;TITLE=Proceedings 48th AIAA Aerospace Sciences Meeting 2010
Scopus-Elsevier
DOI: 10.2514/6.2010-1140
Popis: The capability of a proper-orthogonal-decomposition-based data mining approach for the analysis of flow field data of Pareto-optimal solutions is demonstrated. This method enables a designer to extract design knowledge by examining baseline data and a limited number of eigenvectors and orthogonal base vectors. The flow data analyzed herein are the pressure field data of the Pareto-optimal solutions of an aerodynamic transonic airfoil shape optimization problem. The results of the present study indicate that the proper-orthogonaldecomposition-based data mining approach is useful for extracting design knowledge from the flow field data of the Pareto-optimal solutions.
Databáze: OpenAIRE