Flow Field Data Mining of Pareto-Optimal Airfoils Using Proper Orthogonal Decomposition
Autor: | Oyama, Akira, Verburg, Paul C., Nonomura, Taku, Hoeijmakers, Harry W.M., Fuji, Kozo, Muellner, George K. |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Proceedings 48th AIAA Aerospace Sciences Meeting 2010: Including the New Horizons Forum and Aerospace Exposition, 1-11 STARTPAGE=1;ENDPAGE=11;TITLE=Proceedings 48th AIAA Aerospace Sciences Meeting 2010 Scopus-Elsevier |
DOI: | 10.2514/6.2010-1140 |
Popis: | The capability of a proper-orthogonal-decomposition-based data mining approach for the analysis of flow field data of Pareto-optimal solutions is demonstrated. This method enables a designer to extract design knowledge by examining baseline data and a limited number of eigenvectors and orthogonal base vectors. The flow data analyzed herein are the pressure field data of the Pareto-optimal solutions of an aerodynamic transonic airfoil shape optimization problem. The results of the present study indicate that the proper-orthogonaldecomposition-based data mining approach is useful for extracting design knowledge from the flow field data of the Pareto-optimal solutions. |
Databáze: | OpenAIRE |
Externí odkaz: |