Coincidence of Variable Exponent Herz Spaces with Variable Exponent Morrey Type Spaces and Boundedness of Sublinear Operators in these Spaces
Autor: | Humberto Rafeiro, Stefan Samko |
---|---|
Rok vydání: | 2021 |
Předmět: |
Mathematics::Functional Analysis
Pure mathematics Class (set theory) Functional analysis Sublinear function Mathematics::Operator Algebras Morrey spaces -and variable exponent spaces 010102 general mathematics Mathematics::Classical Analysis and ODEs Scale (descriptive set theory) Type (model theory) Sublinear operators 01 natural sciences Coincidence Potential theory 010104 statistics & probability Variable (computer science) Singular operators Herz spaces Function spaces 0101 mathematics Mathematics Analysis Maximal function |
Zdroj: | Potential Analysis. 56:437-457 |
ISSN: | 1572-929X 0926-2601 |
DOI: | 10.1007/s11118-020-09891-z |
Popis: | We introduce generalized local and global Herz spaces where all their characteristics are variable. As one of the main results we show that variable Morrey type spaces and complementary variable Morrey type spaces are included into the scale of these generalized variable Herz spaces. We also prove the boundedness of a class of sublinear operators in generalized variable Herz spaces with application to variable Morrey type spaces and their complementary spaces, based on the mentioned inclusion. United Arab Emirates University, Al Ain, United Arab Emirates [G00002994]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-01-00223, 20-51-46003]; TUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) info:eu-repo/semantics/publishedVersion |
Databáze: | OpenAIRE |
Externí odkaz: |