L^p solutions of the steady-state Navier-Stokes equations with rough external forces
Autor: | Bjorland, Clayton, Brandolese, Lorenzo, Iftimie, Dragos, Schonbek, Maria Elena |
---|---|
Přispěvatelé: | Departement of Mathematics [Austin], University of Texas at Austin [Austin], Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics, University of California Santa Cruz, University of California [Santa Cruz] (UCSC), University of California-University of California, FBF grant SC-08-34, NSF grant DMS-0600982, ANR-05-BLAN-0163,SCASEN,Singularités et comportement asymptotique des solutions d'Euler et de Navier-Stokes(2005) |
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: |
Mathematics - Functional Analysis
Mathematics - Analysis of PDEs 76D05 35B40 Lorentz spaces stationary flows FOS: Mathematics Navier-Stokes [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] stability [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] Analysis of PDEs (math.AP) Functional Analysis (math.FA) |
Zdroj: | Communications in Partial Differential Equations Communications in Partial Differential Equations, Taylor & Francis, 2011, 36, pp.216--246 |
ISSN: | 0360-5302 1532-4133 |
Popis: | In this paper we address the existence, the asymptotic behavior and stability in $L^p$ and $L^{p,\infty}$, 3/2. 2nd version revised according to referee's remarks. To appear in Comm. Part. Diff. Eq |
Databáze: | OpenAIRE |
Externí odkaz: |