Zero Velocity Detection Without Motion Pre-Classification: Uniform AI Model for All Pedestrian Motions (UMAM)

Autor: Yacouba Kone, Ni Zhu, Valérie Renaudin
Přispěvatelé: Géolocalisation (AME-GEOLOC), Université Gustave Eiffel
Rok vydání: 2022
Předmět:
Computer science
ZERO-VELOCITY DETECTION
LEGGED LOCOMOTION
01 natural sciences
Field (computer science)
EXTRACTION DE CARACTERISTIQUES
[SPI]Engineering Sciences [physics]
Velocity Moments
ZERO VELOCITY UPDATE
SENSORS
UNITE DE MESURE INERTIELLE (IMU)
Instrumentation
CHAUSSURES
ESSAI EN MILIEU OUVERT
Detector
Zero (complex analysis)
LOCOMOTION SUR PIED
UNITE DE MESURE
PEDESTRIAN NAVIGATION
SITES D&apos
NAVIGATION
MACHINE LEARNING
Algorithm
OPEN AREA TEST SITES
FEATURE EXTRACTION
FOOT
CAPTEURS
ESSAI
Computation
AUTOMATIQUE
DETECTION DE LA VITESSE NULLE
INERTIAL SENSORS
APPRENTISSAGE
FOOTWEAR
DISPOSITIFS DE POSITIONNEMENT MONTES SUR LE PIED
PIETON
Set (abstract data type)
MISE A JOUR DE LA VITESSE NULLE
Inertial measurement unit
NAVIGATION PEDESTRE
PIED
CAPTEUR
Electrical and Electronic Engineering
CAPTEURS INERTIELS
APPRENTISSAGE AUTOMATIQUE
Propagation of uncertainty
FOOT-MOUNTED POSITIONING DEVICES
NAVIGATION INERTIELLE
010401 analytical chemistry
CAPTEUR INERTIEL
0104 chemical sciences
INERTIAL MEASUREMENT UNIT (IMU)
Zdroj: IEEE Sensors Journal
IEEE Sensors Journal, Institute of Electrical and Electronics Engineers, 2021, 9 p. ⟨10.1109/JSEN.2021.3099860⟩
ISSN: 2379-9153
1530-437X
DOI: 10.1109/jsen.2021.3099860
Popis: Foot-mounted positioning devices are becoming more and more popular in the different application field. For example, inertial sensors are now embedded in safety shoes to monitor security. They allow positioning with zero velocity update to bound the error growth of foot-mounted inertial sensors. High positioning accuracy depends on robust zero velocity detector (ZVD). Existing Artificial Intelligent (AI)-based methods classify the pedestrian dynamics to adjust ZVD at the cost of high computation costs and error propagation from miss-classification. We propose a machine learning model to detect zero velocity moments without any pre-classification step, named Uniform AI Model for All pedestrian Motions (UMAM). Performance is evaluated by benchmarking on two new subjects of opposite gender and different size, not included in the training data set, over complex indoor/outdoor paths of 2 km for subject 1 and 2.1 km for subject 2. We obtain an average 2D loop closure error of less than 0.37%.
Databáze: OpenAIRE