Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics
Autor: | Jonathan D. Evans, Cassio M. Oishi, I. L. Palhares Junior, H.L. França |
---|---|
Přispěvatelé: | Univ Bath, Universidade de São Paulo (USP), Universidade Estadual Paulista (Unesp) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0209 industrial biotechnology
Context (language use) 02 engineering and technology Kinematics Viscoelasticity Stress (mechanics) Physics::Fluid Dynamics Stress singularity 020901 industrial engineering & automation 0202 electrical engineering electronic engineering information engineering Newtonian fluid Streamlines streaklines and pathlines Mathematics Applied Mathematics Mathematical analysis Numerical verification 020206 networking & telecommunications Matched asymptotics Computational Mathematics Flow (mathematics) Vector field Boundary layers CINEMÁTICA DOS FLUÍDOS Oldroyd-B fluid |
Zdroj: | Web of Science Repositório Institucional da UNESP Universidade Estadual Paulista (UNESP) instacron:UNESP Evans, J D, França, H L, Palhares Junior, I L & Oishi, C M 2020, ' Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics ', Applied Mathematics and Computation, vol. 387, 125106 . https://doi.org/10.1016/j.amc.2020.125106 Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
DOI: | 10.1016/j.amc.2020.125106 |
Popis: | Made available in DSpace on 2021-06-25T12:21:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2020-12-15 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) BEPE We focus here on using a Newtonian velocity field to evaluate numerical schemes for two different formulations of viscoelastic flow. The two distinct formulations we consider, correspond to either using a fixed basis for the elastic stress or one that uses the flow directions or streamlines. The former is the traditional Cartesian stress formulation, whilst the later may be referred to as the natural stress formulation of the equations. We choose the Oldroyd-B fluid and three benchmarks in computational rheology: the 4:1 contraction flow, the stick-slip and cross-slot problems. In the context of the contraction flow, fixing the kinematics as Newtonian, actually gives a larger stress singularity at the re-entrant corner, the matched asymptotics of which are presented here. Numerical results for temporal and spatial convergence of the two formulations are compared first in this decoupled velocity and elastic stress situation, to assess the performance of the two approaches. This may be regarded as an intermediate test case before proceeding to the far more difficult fully coupled velocity and stress situation. We also present comparison results between numerics and asymptotics for the stick-slip problem. Finally, the natural stress formulation is used to investigate the cross-slot problem, again in a Newtonian velocity field. (C) 2020 Elsevier Inc. All rights reserved. Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England Univ Sao Paulo, Inst Ciencias Matemat & Comp, Sao Carlos, Brazil Univ Estadual Paulista, Dept Matemat & Comp, Presidente Prudente, Brazil Univ Estadual Paulista, Dept Matemat & Comp, Presidente Prudente, Brazil FAPESP: 2018/22242-0 CNPq: 307459/2016-0 FAPESP: 2013/07375-0 FAPESP: 2019/01811-9 FAPESP: 2014/17348-2 BEPE: 2016/20389-8 |
Databáze: | OpenAIRE |
Externí odkaz: |