Caspase-8 and Caspase-3 Are Expressed by Different Populations of Cortical Neurons Undergoing Delayed Cell Death after Focal Stroke in the Rat
Autor: | Giora Z. Feuerstein, Julie A. Ellison, Frank C. Barone, James J. Velier, Kristine K. Kikly, Patricia A. Spera |
---|---|
Rok vydání: | 1999 |
Předmět: |
Male
Programmed cell death Time Factors Apoptosis Caspase 3 Caspase 8 Article Functional Laterality Gene Expression Regulation Enzymologic Brain Ischemia Rats Inbred SHR medicine Animals Caspase Cerebral Cortex Neurons Caspase-9 Cell Death Microglia biology General Neuroscience Immunohistochemistry Caspase 9 Rats Cell biology medicine.anatomical_structure Ischemic Attack Transient Caspases Reperfusion biology.protein Neuroscience Intracellular |
Zdroj: | The Journal of Neuroscience. 19:5932-5941 |
ISSN: | 1529-2401 0270-6474 |
DOI: | 10.1523/jneurosci.19-14-05932.1999 |
Popis: | A number of studies have provided evidence that neuronal cell loss after stroke involves programmed cell death or apoptosis. In particular, recent biochemical and immunohistochemical studies have demonstrated the expression and activation of intracellular proteases, notably caspase-3, which act as both initiators and executors of the apoptotic process. To further elucidate the involvement of caspases in neuronal cell death induced by focal stroke we developed a panel of antibodies and investigated the spatial and temporal pattern of both caspase-8 and caspase-3 expression. Our efforts focused on caspase-8 because its “apical” position within the enzymatic cascade of caspases makes it a potentially important therapeutic target. Constitutive expression of procaspase-8 was detectable in most cortical neurons, and proteolytic processing yielding the active form of caspase-8 was found as early as 6 hr after focal stroke induced in rats by permanent middle cerebral artery occlusion. This active form of caspase-8 was predominantly seen in the large pyramidal neurons of lamina V. Active caspase-3 was evident only in neurons located within lamina II/III starting at 24 hr after injury and in microglia throughout the core infarct at all times examined. Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling, gel electrophoresis of DNA, and neuronal cell quantitation indicated that there was an early nonapoptotic loss of cortical neurons followed by a progressive elimination of neurons with features of apoptosis. These data indicate that the pattern of caspase expression occurring during delayed neuronal cell death after focal stroke will vary depending on the neuronal phenotype. |
Databáze: | OpenAIRE |
Externí odkaz: |