Electrical spin injection in silicon and the role of defects
Autor: | F. Rortais, C. Vergnaud, Jean-Philippe Attané, Matthieu Jamet, Henri Jaffrès, Alain Marty, C. Beigné, Julie Widiez, Clarisse Ducruet, J.-M. George |
---|---|
Přispěvatelé: | SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CROCUS Technology, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES-Centre National de la Recherche Scientifique (CNRS), ANR-13-BS10-0002,SiGeSPIN,Spintronique dans le silicium et le germanium(2013), THALES [France]-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
010302 applied physics
Hanle effect Materials science Silicon Condensed matter physics Magnetoresistance chemistry.chemical_element Germanium 02 engineering and technology 021001 nanoscience & nanotechnology 01 natural sciences Signal chemistry Ferromagnetism 0103 physical sciences Condensed Matter::Strongly Correlated Electrons [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] 0210 nano-technology Quantum tunnelling Spin-½ |
Zdroj: | Physical Review B: Condensed Matter and Materials Physics (1998-2015) Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2016, 94 (17), pp.174426. ⟨10.1103/PhysRevB.94.174426⟩ Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2016, 94 (17), pp.174426. ⟨10.1103/PhysRevB.94.174426⟩ |
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.94.174426⟩ |
Popis: | International audience; Three-terminal devices, where the same ferromagnetic electrode is used for electrical spin injection and detection, is a very easy and powerful tool to probe the spin properties in nonmagnetic materials. For instance, it has been intensively used to study spin injection and detection in silicon. However the interpretation of the magnetoresistance signals observed experimentally is still under debate. In particular, a controversy has been raised about the experimental spin signal which is orders of magnitude larger than the predicted value. Recently, Song et al. [Phys. Rev. Lett. 113, 047205 (2014)] proposed that the magnetoresistance signal measured using the Hanle effect in a three-terminal geometry is due to defects or impurities in the tunnel barrier separating the ferromagnetic electrode from the silicon channel. It has also been supported by the experimental work of Txoperena et al. [Phys. Rev. Lett. 113, 146601 (2014)]. In this study, we perform electrical spin injection/detection measurements using three-terminal devices in different silicon films and study the role of defects. For this purpose, we use the tunneling inelastic spectroscopy to measure the Hanle effect and control the presence of defects in the tunnel barrier. Contrary to previous reports, we demonstrate that defects have no significant contribution to the spin signal. From a comparison with capacitance-voltage measurements in n-doped germanium in which interface states contribute to the spin signal, we also conclude on the presence of interface states in silicon. |
Databáze: | OpenAIRE |
Externí odkaz: |