High order time integration and mesh adaptation with error control for incompressible Navier-Stokes and scalar transport resolution on dual grids
Autor: | Marc-Arthur N’Guessan, Marc Massot, Laurent Séries, Christian Tenaud |
---|---|
Přispěvatelé: | Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
dual
Multiresolution analysis Scalar (mathematics) MathematicsofComputing_NUMERICALANALYSIS 010103 numerical & computational mathematics 01 natural sciences 010305 fluids & plasmas multiresolution analysis Incompressible Navier-Stokes 0103 physical sciences Applied mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Navier stokes [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] 0101 mathematics High order Mesh adaptation Dynamic mesh Mathematics scalar transport dynamic mesh adaptation Applied Mathematics [SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment Computational Mathematics Compressibility high order implicit Runge Kutta Error detection and correction [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] |
Zdroj: | Journal of Computational and Applied Mathematics Journal of Computational and Applied Mathematics, Elsevier, 2021, 387, pp.112542. ⟨10.1016/j.cam.2019.112542⟩ |
ISSN: | 0377-0427 |
DOI: | 10.1016/j.cam.2019.112542⟩ |
Popis: | International audience; Relying on a building block developed by the authors in order to resolve the incompressible Navier-Stokes equation with high order implicit time stepping and dynamic mesh adaptation based on multiresolution analysis with collocated variables, the present contribution investigates the ability to extend such a strategy for scalar transport at relatively large Schmidt numbers using a finer level of refinement compared to the resolution of the hydrody-namic variables, while preserving space adaptation with error control. This building block is a key part of a strategy to construct a low-Mach number code based on a splitting strategy for combustion applications, where several spatial scales are into play. The computational efficiency and accuracy of the proposed strategy is assessed on a well-chosen three-vortex simulation. |
Databáze: | OpenAIRE |
Externí odkaz: |