High order time integration and mesh adaptation with error control for incompressible Navier-Stokes and scalar transport resolution on dual grids

Autor: Marc-Arthur N’Guessan, Marc Massot, Laurent Séries, Christian Tenaud
Přispěvatelé: Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
dual
Multiresolution analysis
Scalar (mathematics)
MathematicsofComputing_NUMERICALANALYSIS
010103 numerical & computational mathematics
01 natural sciences
010305 fluids & plasmas
multiresolution analysis
Incompressible Navier-Stokes
0103 physical sciences
Applied mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Navier stokes
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
0101 mathematics
High order
Mesh adaptation
Dynamic mesh
Mathematics
scalar transport
dynamic mesh adaptation
Applied Mathematics
[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment
Computational Mathematics
Compressibility
high order implicit Runge Kutta
Error detection and correction
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Zdroj: Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics, Elsevier, 2021, 387, pp.112542. ⟨10.1016/j.cam.2019.112542⟩
ISSN: 0377-0427
DOI: 10.1016/j.cam.2019.112542⟩
Popis: International audience; Relying on a building block developed by the authors in order to resolve the incompressible Navier-Stokes equation with high order implicit time stepping and dynamic mesh adaptation based on multiresolution analysis with collocated variables, the present contribution investigates the ability to extend such a strategy for scalar transport at relatively large Schmidt numbers using a finer level of refinement compared to the resolution of the hydrody-namic variables, while preserving space adaptation with error control. This building block is a key part of a strategy to construct a low-Mach number code based on a splitting strategy for combustion applications, where several spatial scales are into play. The computational efficiency and accuracy of the proposed strategy is assessed on a well-chosen three-vortex simulation.
Databáze: OpenAIRE