Factoriality Properties of Moduli Spaces of Sheaves on Abelian and K3 Surfaces

Autor: Antonio Rapagnetta, Arvid Perego
Přispěvatelé: Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Roma Tor Vergata [Roma]
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), 2012, 2014 (3), pp.643--680. ⟨10.1093/imrn/rns233⟩
ISSN: 1073-7928
1687-0247
DOI: 10.1093/imrn/rns233⟩
Popis: In this paper we complete the determination of the index of factoriality of moduli spaces of semistable sheaves on an abelian or projective K3 surface $S$. If $v=2w$ is a Mukai vector, $w$ is primitive, $w^{2}=2$ and $H$ is a generic polarization, let $M_{v}(S,H)$ be the moduli space of $H-$semistable sheaves on $S$ with Mukai vector $v$. First, we describe in terms of $v$ the pure weight-two Hodge structure and the Beauville form on the second integral cohomology of the symplectic resolutions of $M_{v}(S,H)$ (when $S$ is K3) and of the fiber $K_{v}(S,H)$ of the Albanese map of $M_{v}(S,H)$ (when $S$ is abelian). Then, if $S$ is K3 we show that $M_{v}(S,H)$ is either locally factorial or $2-$factorial, and we give an example of both cases. If $S$ is abelian, we show that $M_{v}(S,H)$ and $K_{v}(S,H)$ are $2-$factorial.
14 pages; added calculation of the weight-two Hodge structures of the symplectic resolutions, bibliographical references corrected
Databáze: OpenAIRE