Hub-organized parallel circuits of central circadian pacemaker neurons for visual photoentrainment in Drosophila

Autor: Min Tang, Dong Gen Luo, Tian Yang, Taishi Yoshii, Li Hui Cao, Na Xiao, Bowen Deng, Meng Tong Li
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Nature Communications, Vol 9, Iss 1, Pp 1-14 (2018)
Nature Communications
ISSN: 2041-1723
Popis: Circadian rhythms are orchestrated by a master clock that emerges from a network of circadian pacemaker neurons. The master clock is synchronized to external light/dark cycles through photoentrainment, but the circuit mechanisms underlying visual photoentrainment remain largely unknown. Here, we report that Drosophila has eye-mediated photoentrainment via a parallel pacemaker neuron organization. Patch-clamp recordings of central circadian pacemaker neurons reveal that light excites most of them independently of one another. We also show that light-responding pacemaker neurons send their dendrites to a neuropil called accessary medulla (aMe), where they make monosynaptic connections with Hofbauer–Buchner eyelet photoreceptors and interneurons that transmit compound-eye signals. Laser ablation of aMe and eye removal both abolish light responses of circadian pacemaker neurons, revealing aMe as a hub to channel eye inputs to central circadian clock. Taken together, we demonstrate that the central clock receives eye inputs via hub-organized parallel circuits in Drosophila.
The central circadian clock in Drosophila is made up of ~ 150 anatomically distributed neurons; the circuits underlying photoentrainment is unclear. This study describes ex vivo patch-clamp recording of the eye-mediated light response of all known circadian clock neurons, and shows that they are organized in parallel circuits centered around a hub.
Databáze: OpenAIRE