Feedback inhibition of cAMP effector signaling by a chaperone-assisted ubiquitin system

Autor: Nicola Antonino Russo, Matthis Synofzik, Omar Torres-Quesada, Sonia Piccinin, Federica Moraca, Herbert Lindner, Bruno Catalanotti, Antonio Feliciello, Ulrich Stelzl, Verena Bachmann, Rossella Delle Donne, Laura Rinaldi, Corrado Garbi, Robert Nisticò, Antonella Scorziello, Lucio Annunziato, Francesco Chiuso, Eduard Stefan, Florian Enzler
Přispěvatelé: Rinaldi, L., Delle Donne, R., Catalanotti, B., Torres-Quesada, O., Enzler, F., Moraca, F., Nistico', ROBERT GIOVANNI, Chiuso, Francesco, Piccinin, S., Bachmann, V., Lindner, H. H., Garbi, C., Scorziello, A., Russo, N. A., Synofzik, M., Stelzl, U., Annunziato, L., Stefan, Eduard, Feliciello, A.
Jazyk: angličtina
Rok vydání: 2019
Předmět:
0301 basic medicine
pathology [Spinocerebellar Ataxias]
Molecular Chaperone
Ubiquitin-Protein Ligase
Ubiquitylation
Leupeptins
metabolism [Cyclic AMP-Dependent Protein Kinase Catalytic Subunits]
benzyloxycarbonylleucyl-leucyl-leucine aldehyde
General Physics and Astronomy
02 engineering and technology
drug effects [Feedback
Physiological]

Hippocampus
Mice
Ubiquitin
HEK293 Cell
Cyclic AMP
genetics [Spinocerebellar Ataxias]
antagonists & inhibitors [HSP70 Heat-Shock Proteins]
Proteolysi
Phosphorylation
Receptor
lcsh:Science
metabolism [Molecular Chaperones]
genetics [Ubiquitin-Protein Ligases]
Feedback
Physiological

HSP70 Heat-Shock Protein
Multidisciplinary
biology
Chemistry
Effector
pharmacology [Purine Nucleosides]
Settore BIO/14
021001 nanoscience & nanotechnology
3. Good health
Ubiquitin ligase
Cell biology
VER 155008
pharmacology [Leupeptins]
Holoenzyme
drug effects [Protein Binding]
Fibroblast
ddc:500
0210 nano-technology
metabolism [Cyclic AMP]
Stub1 protein
mouse

Human
Cell signalling
Protein Binding
Signal Transduction
drug effects [Signal Transduction]
congenital
hereditary
and neonatal diseases and abnormalities

Science
Ubiquitin-Protein Ligases
Primary Cell Culture
Leupeptin
Purine Nucleoside
General Biochemistry
Genetics and Molecular Biology

metabolism [Holoenzymes]
Article
03 medical and health sciences
metabolism [Ubiquitin-Protein Ligases]
Hippocampu
physiology [Signal Transduction]
Animals
Humans
Spinocerebellar Ataxias
HSP70 Heat-Shock Proteins
Protein kinase A
STUB1 protein
human

Spinocerebellar Ataxia
Cyclic AMP-Dependent Protein Kinase Catalytic Subunits
Animal
HEK 293 cells
drug effects [Proteolysis]
Ubiquitination
General Chemistry
Purine Nucleosides
Fibroblasts
physiology [Feedback
Physiological]

Mice
Inbred C57BL

030104 developmental biology
pathology [Hippocampus]
HEK293 Cells
Ubiquitin ligases
Chaperone (protein)
Proteolysis
biology.protein
lcsh:Q
Cyclic AMP-Dependent Protein Kinase Catalytic Subunit
Holoenzymes
physiology [Ubiquitination]
Molecular Chaperones
Zdroj: Nature Communications
Nature Communications, Vol 10, Iss 1, Pp 1-14 (2019)
Nature Communications 10(1), 2572 (2019). doi:10.1038/s41467-019-10037-y
ISSN: 2041-1723
DOI: 10.1038/s41467-019-10037-y
Popis: Activation of G-protein coupled receptors elevates cAMP levels promoting dissociation of protein kinase A (PKA) holoenzymes and release of catalytic subunits (PKAc). This results in PKAc-mediated phosphorylation of compartmentalized substrates that control central aspects of cell physiology. The mechanism of PKAc activation and signaling have been largely characterized. However, the modes of PKAc inactivation by regulated proteolysis were unknown. Here, we identify a regulatory mechanism that precisely tunes PKAc stability and downstream signaling. Following agonist stimulation, the recruitment of the chaperone-bound E3 ligase CHIP promotes ubiquitylation and proteolysis of PKAc, thus attenuating cAMP signaling. Genetic inactivation of CHIP or pharmacological inhibition of HSP70 enhances PKAc signaling and sustains hippocampal long-term potentiation. Interestingly, primary fibroblasts from autosomal recessive spinocerebellar ataxia 16 (SCAR16) patients carrying germline inactivating mutations of CHIP show a dramatic dysregulation of PKA signaling. This suggests the existence of a negative feedback mechanism for restricting hormonally controlled PKA activities.
How intracellular cAMP activate PKA is well-characterized, but PKA inactivation remains poorly understood. Here, Rinaldi et al. show that CHIP/HSP70 ubiquitinates the catalytic subunit of PKA, with implications for the human disease spinocerebellar ataxia 16, as patients often have CHIP mutations.
Databáze: OpenAIRE