On the complexity of some birational transformations

Autor: Jean Christian Angles D'Auriac, Claude M. Viallet, J.-M. Maillard
Přispěvatelé: Centre de Recherches sur les Très Basses Températures (CRTBT), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique des Liquides (LPTL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2006
Předmět:
Zdroj: Journal of Physics A: Mathematical and Theoretical
Journal of Physics A: Mathematical and Theoretical, 2006, 39, pp.3641. ⟨10.1088/0305-4470/39/14/009⟩
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2006, 39, pp.3641. ⟨10.1088/0305-4470/39/14/009⟩
D'Auriac, Jean Christian Angles; Maillard, Jean-Marie; & Viallet, Claude. (2005). On the complexity of some birational transformations. Journal of Physics A Mathematical and Theoretical 39 (2006) 3641. doi: 10.1088/0305-4470/39/14/009. UC Davis: Retrieved from: http://www.escholarship.org/uc/item/7bg0k2m0
ISSN: 1361-6447
0305-4470
1751-8113
1751-8121
DOI: 10.1088/0305-4470/39/14/009
Popis: Using three different approaches, we analyze the complexity of various birational maps constructed from simple operations (inversions) on square matrices of arbitrary size. The first approach consists in the study of the images of lines, and relies mainly on univariate polynomial algebra, the second approach is a singularity analysis, and the third method is more numerical, using integer arithmetics. Each method has its own domain of application, but they give corroborating results, and lead us to a conjecture on the complexity of a class of maps constructed from matrix inversions.
Databáze: OpenAIRE