Acceleration waves and oscillating gas bubbles modelled by rational extended thermodynamics

Autor: F. Brini, L. Seccia
Přispěvatelé: Francesca Brini, Leonardo Seccia
Rok vydání: 2022
Předmět:
Zdroj: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 478
ISSN: 1471-2946
1364-5021
DOI: 10.1098/rspa.2022.0246
Popis: The study of acceleration waves for a rarefied polyatomic gas is carried out in planar, cylindrical and spherical geometry referring to the rational extended thermodynamics theory with 14 moments. The case of a rarefied monatomic gas is determined as a limit case, and the role of geometry and molecular degrees of freedom is investigated. In addition, the behaviour of an acceleration wave travelling inside an oscillating gas bubble is modelled by the 14-moment PDE system under adiabatic condition. We show that dissipation combined with hyperbolicity tends to inhibit shock formation, and that the dynamic pressure cannot be zero inside the oscillating bubble. This fact can produce observable effects even in the Navier–Stokes approximation, if the gas exhibits high bulk viscosity.
Databáze: OpenAIRE