An Alternative Approach for SIDH Arithmetic

Autor: Cyril Bouvier, Laurent Imbert
Přispěvatelé: Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Exact Computing (ECO), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), ANR-19-CE48-0008,CIAO,Cryptographie, isogenies et variété abéliennes surpuissantes(2019)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: IACR International Conference on Public-Key Cryptography (PKC 2021)
IACR International Conference on Public-Key Cryptography (PKC 2021), May 2021, Virtual, United Kingdom. pp.27-44, ⟨10.1007/978-3-030-75245-3_2⟩
Public-Key Cryptography – PKC 2021 ISBN: 9783030752446
Public Key Cryptography (1)
DOI: 10.1007/978-3-030-75245-3_2⟩
Popis: International audience; In this paper, we present new algorithms for the field arithmetic layers of supersingular isogeny Diffie-Hellman; one of the fifteen remaining candidates in the NIST post-quantum standardization process. Our approach uses a polynomial representation of the field elements together with mechanisms to keep the coefficients within bounds during the arithmetic operations. We present timings and comparisons for SIKEp503 and suggest a novel 736-bit prime that offers a 1.17×speedup compared to SIKEp751 for a similar level of security.
Databáze: OpenAIRE