An Alternative Approach for SIDH Arithmetic
Autor: | Cyril Bouvier, Laurent Imbert |
---|---|
Přispěvatelé: | Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Exact Computing (ECO), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), ANR-19-CE48-0008,CIAO,Cryptographie, isogenies et variété abéliennes surpuissantes(2019) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Isogeny
Polynomial Speedup Computer science Efficient arithmetic 020206 networking & telecommunications Field (mathematics) 02 engineering and technology Field arithmetic Prime (order theory) 020202 computer hardware & architecture [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] 0202 electrical engineering electronic engineering information engineering Supersingular isogeny Diffie-Hellman NIST Arithmetic Representation (mathematics) Polynomial Modular Number System |
Zdroj: | IACR International Conference on Public-Key Cryptography (PKC 2021) IACR International Conference on Public-Key Cryptography (PKC 2021), May 2021, Virtual, United Kingdom. pp.27-44, ⟨10.1007/978-3-030-75245-3_2⟩ Public-Key Cryptography – PKC 2021 ISBN: 9783030752446 Public Key Cryptography (1) |
DOI: | 10.1007/978-3-030-75245-3_2⟩ |
Popis: | International audience; In this paper, we present new algorithms for the field arithmetic layers of supersingular isogeny Diffie-Hellman; one of the fifteen remaining candidates in the NIST post-quantum standardization process. Our approach uses a polynomial representation of the field elements together with mechanisms to keep the coefficients within bounds during the arithmetic operations. We present timings and comparisons for SIKEp503 and suggest a novel 736-bit prime that offers a 1.17×speedup compared to SIKEp751 for a similar level of security. |
Databáze: | OpenAIRE |
Externí odkaz: |