iPReditor-CMG: Improving Predictive RNA Editor for Crop Mitochondrial Genomes Using Genomic Sequence Features and Optimal Support Vector Machine

Autor: Yixiang Cao, Yanjun Fan, Zhijun Dai, Siqiao Tan, Shengnan Hu, Wei Zhou, Yongqiang Wang, Ziqi Wang, Sidong Qin, Qiyuan Liu
Rok vydání: 2021
Předmět:
Popis: Cytosine (C) to uracil (U) RNA editing is one of the most important post-transcriptional processes, however exploring C-to-U editing events efficiently within the crop mitochondrial genome remains a challenge. An improving predictive RNA editor for crop mitochondrial genomes, iPReditor-CMG, was proposed, which was based on SVM, three common crop mitochondrial genomes and self-sequenced tobacco mitochondrial ATPase. After multi-combination feature extracting, high-dimension feature screening and multi-test independent predicting, the results showed that the average accuracy of intraspecific prediction was 0.85, and the highest value even up to 0.91, which outperformed the previous reference models. While the prediction accuracies were 0.78 between dicotyledons and no more than 0.56 between dicotyledons and monocotyledons, implying a possible similarity in C-to-U editing mechanisms among close relatives. The best model was finally identified with an independent test accuracy of 0.91 and an area under the curve of 0.88, and further suggested that five unreported feature sequences TGACA, ACAAC, GTAGA, CCGTT and TAACA were closely associated with the editing phenomenon. Multiple evaluation findings supported that the iPReditor-CMG could be effectively applied to predict crop mitochondrial editing sites, which may contribute to insight into their recognition mechanisms and even other post-transcriptional events in crop mitochondria.
Databáze: OpenAIRE