Experimentation in the Schubert Calculus
Autor: | Abraham Martín del Campo, Frank Sottile |
---|---|
Rok vydání: | 2013 |
Předmět: |
Schubert calculus
Computer science 010102 general mathematics Structure (category theory) Galois group 010103 numerical & computational mathematics 14N15 14P99 01 natural sciences Mathematical research Enumerative geometry Algebra Mathematics - Algebraic Geometry Galois groups Mathematics::Algebraic Geometry FOS: Mathematics Shapiro Conjecture 0101 mathematics 14P99 Algebraic Geometry (math.AG) 14N15 |
Zdroj: | Schubert Calculus — Osaka 2012, H. Naruse, T. Ikeda, M. Masuda and T. Tanisaki, eds. (Tokyo: Mathematical Society of Japan, 2016) |
DOI: | 10.48550/arxiv.1308.3284 |
Popis: | Many aspects of Schubert calculus are easily modeled on a computer. This enables large-scale experimentation to investigate subtle and ill-understood phenomena in the Schubert calculus. A well-known web of conjectures and results in the real Schubert calculus has been inspired by this continuing experimentation. A similarly rich story concerning intrinsic structure, or Galois groups, of Schubert problems is also beginning to emerge from experimentation. This showcases new possibilities for the use of computers in mathematical research. Comment: 30 pages. Based on Sottile's talks at 2012 MSJ-SI on Schubert Calculus |
Databáze: | OpenAIRE |
Externí odkaz: |