Multi-tissue transcriptomic study reveals the main role of liver in the chicken adaptive response to a switch in dietary energy source through the transcriptional regulation of lipogenesis

Autor: David Causeur, Cécile Berri, Magalie Houée-Bigot, Christelle Hennequet-Antier, Colette Désert, Yuna Blum, Morgane Boutin, Elisabeth Baéza, Jérôme Montfort, Sonia Métayer-Coustard, E. Le Bihan, Anne Collin, Michel J. Duclos, Sandrine Lagarrigue, M. Aite, Florence Gondret, A. le Cam, Pierre-François Roux, S. Allais
Přispěvatelé: Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] (PEGASE), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Unité de Recherches Avicoles (URA), Institut National de la Recherche Agronomique (INRA), Laboratoire de Physiologie et Génomique des Poissons (LPGP), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Institut National de la Recherche Agronomique (INRA), Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), AGROCAMPUS OUEST [Le Rheu], Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Biologie des Oiseaux et Aviculture (BOA), Institut National de la Recherche Agronomique (INRA)-Université de Tours (UT), This project received financial support from French National Agency of Research (FatInteger project, ANR-11-SVS7) and also used data from the ChickStress Project (ANR-13-ADAP)., ANR-11-BSV7-0004,FatInteger,Recherche de régulateurs clefs de la plasticité lipidique chez deux espèces monogastriques majeures (porc et poule) en combinant des données haut débit et des approches statistique, bioinformatique et phylogénique.(2011), ANR-13-ADAP-0014,ChickStress,Mécanismes d'adaptation à la chaleur et à un aliment suboptimal chez la poule pondeuse(2013), Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] ( PEGASE ), Institut National de la Recherche Agronomique ( INRA ) -AGROCAMPUS OUEST, Recherches Avicoles ( SRA ), Institut National de la Recherche Agronomique ( INRA ), Laboratoire de Physiologie et Génomique des Poissons ( LPGP ), Institut National de la Recherche Agronomique ( INRA ) -Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ), ANR FatInteger project (ANR-11-SVS7), ANR ChickStress Project (ANR-13-ADAP), AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA), Recherches Avicoles (SRA), Institut National de la Recherche Agronomique (INRA)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université de Tours, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest
Rok vydání: 2017
Předmět:
0301 basic medicine
Dietary Fiber
Transcription
Genetic

Adipose tissue
[ SDV.BA ] Life Sciences [q-bio]/Animal biology
Transcriptome
chemistry.chemical_compound
Transcriptional regulation
Beta oxidation
lipogénèse
Animal biology
2. Zero hunger
Regulation of gene expression
Fat diet
TADA2A
amidon
[SDV.BA]Life Sciences [q-bio]/Animal biology
Starch
Lipid
polyunsaturated fatty acid
foie
Chicken
SREBF1
Biochemistry
Liver
fibre
Lipogenesis
animal feeding
Energy source
Biotechnology
fiber
expression des gènes
Research Article
Regulation
Meat
lcsh:QH426-470
alimentation animale
lcsh:Biotechnology
poulet
Biology
Diet
High-Fat

03 medical and health sciences
acide gras polyinsaturé
lcsh:TP248.13-248.65
Biologie animale
Genetics
Animals
Adaptation
Gene expression
PUFA
Fatty acid synthesis
lipide
030102 biochemistry & molecular biology
transcriptomique
lcsh:Genetics
030104 developmental biology
chemistry
Gene Expression Regulation
liver function tests
régulation génique
Chickens
Zdroj: BMC Genomics
BMC Genomics, BioMed Central, 2018, 19 (1), pp.1-19. ⟨10.1186/s12864-018-4520-5⟩
BMC Genomics, BioMed Central, 2018, 19 (1), n.p. 〈10.1186/s12864-018-4520-5〉
BMC Genomics, BioMed Central, 2018, 19 (1), pp.187. ⟨10.1186/s12864-018-4520-5⟩
BMC Genomics, Vol 19, Iss 1, Pp 1-18 (2018)
BMC Genomics 1 (19), . (2018)
BMC Genomics, 2018, 19 (1), pp.1-19. ⟨10.1186/s12864-018-4520-5⟩
ISSN: 1471-2164
Popis: The 178 microarrays are MIAME compliant and available in Gene Expression Omnibus (GEO) through GEO Series accession number GSE104042 andplatform number GPL19630.; International audience; Background: Because the cost of cereals is unstable and represents a large part of production charges for meattype chicken, there is an urge to formulate alternative diets from more cost-effective feedstuff. We have recently shown that meat-type chicken source is prone to adapt to dietary starch substitution with fat and fiber. The aim of this study was to better understand the molecular mechanisms of this adaptation to changes in dietary energy sources through the fine characterization of transcriptomic changes occurring in three major metabolic tissues – liver, adipose tissue and muscle – as well as in circulating blood cells.Results: We revealed the fine-tuned regulation of many hepatic genes encoding key enzymes driving glycogenesis and de novo fatty acid synthesis pathways and of some genes participating in oxidation. Among the genes expressed upon consumption of a high-fat, high-fiber diet, we highlighted CPT1A, which encodes a key enzyme in the regulation of fatty acid oxidation. Conversely, the repression of lipogenic genes by the high-fat diet was clearly associated with the downregulation of SREBF1 transcripts but was not associated with the transcript regulation of MLXIPL and NR1H3, which are both transcription factors. This result suggests a pivotal role for SREBF1 in lipogenesis regulation in response to a decrease in dietary starch and an increase in dietary PUFA. Other prospective regulators of de novo hepatic lipogenesis were suggested, such as PPARD, JUN, TADA2A and KAT2B, the last two genes belonging to the lysine acetyl transferase (KAT) complex family regulating histone and non-histone protein acetylation. Hepatic glycogenic genes were also down-regulated in chickens fed a high-fat, high-fiber diet compared to those in chickens fed a starch-based diet. No significant dietary-associated variations in gene expression profiles was observed in the other studied tissues, suggesting that the liver mainly contributed to the adaptation of birds to changes in energy source and nutrients in their diets, at least at the transcriptional level. Moreover, we showed that PUFA deposition observed in the different tissues may not rely on transcriptional changes.Conclusion: We showed the major role of the liver, at the gene expression level, in the adaptive response of chicken to dietary starch substitution with fat and fiber.
Databáze: OpenAIRE