Convex floating bodies of equilibrium

Autor: Florentin, D. I., Schuett, C., Werner, E. M., Zhang, N.
Rok vydání: 2022
Předmět:
Zdroj: Proceedings of the American Mathematical Society. 150:3037-3048
ISSN: 1088-6826
0002-9939
DOI: 10.1090/proc/15697
Popis: We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n n -dimensional convex bodies whose relative density to water is 1 2 \frac {1}{2} . For n = 3 n=3 , this result is due to Falconer.
Databáze: OpenAIRE