A Multilayer LTCC Solution for Integrating 5G Access Point Antenna Modules

Autor: Kari Kautio, Francesco Foglia Manzillo, Mauro Ettorre, Ronan Sauleau, Markku Lahti, Eric Seguenot, Delphine Lelaidier
Přispěvatelé: Institut d'Électronique et des Technologies du numéRique (IETR), Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Nantes Université (NU)-Université de Rennes 1 (UR1)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
corporate feed networks (CFNs)
Engineering
mm-wave technologies
Electric impedance
Millimeter waves
02 engineering and technology
Directional patterns (antenna)
Corporate feed network
7. Clean energy
Integrated solutions
Access-point antennas
law.invention
Antenna-in-package (AiP)
High data rate wireless
[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI]
Microelectronics
law
Low-temperature co-fired ceramics
Broadband
0202 electrical engineering
electronic engineering
information engineering

Millimeter-wave systems
millimeter-wave (mm-wave) antennas
Radiation
ta213
Wireless network
Electrical engineering
Temperature
transverse electromagnetic (TEM) waveguides
Multibeam antennas
Parallel plate waveguide
021001 nanoscience & nanotechnology
Condensed Matter Physics
fifth-generation (5G)
Antenna (radio)
0210 nano-technology
Realization (systems)
Antenna feeders
Vertical configurations
Monolithic microwave integrated circuits
low temperature cofired ceramic (LTCC)
Microwave antennas
Electronic engineering
Electrical and Electronic Engineering
Antenna lobes
ta114
business.industry
Plane (geometry)
020206 networking & telecommunications
Substrate integrated waveguides
[SPI.TRON]Engineering Sciences [physics]/Electronics
Coupling (computer programming)
Multilayers
business
Waveguide
Waveguides
Beam (structure)
Zdroj: IEEE Transactions on Microwave Theory and Techniques
IEEE Transactions on Microwave Theory and Techniques, 2016, 64 (7), pp.2272--2283. ⟨10.1109/TMTT.2016.2574313⟩
Foglia Manzillo, F, Ettorre, M, Lahti, M S, Kautio, K T, Lelaidier, D, Seguenot, E & Sauleau, R 2016, ' A multilayer LTCC solution for integrating 5G access point antenna modules ', IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2272-2283 . https://doi.org/10.1109/TMTT.2016.2574313
IEEE Transactions on Microwave Theory and Techniques, Institute of Electrical and Electronics Engineers, 2016, 64 (7), pp.2272--2283. ⟨10.1109/TMTT.2016.2574313⟩
ISSN: 0018-9480
DOI: 10.1109/TMTT.2016.2574313⟩
Popis: International audience; An integrated solution for the development of multilayer antenna modules for fifth-generation (5G) communications, based on low temperature cofired ceramic (LTCC), is presented. The design exploits the 3-D integration capabilities of the LTCC process, enabling the realization of a full-corporate feed network (CFN) in vertical configuration. A novel implementation of the CFN employing dielectric-embedded parallel plate waveguides (PPWs) is proposed. The PPW lines are delimited by via-rows. As opposed to standard substrate-integrated waveguide feed networks, guided fields are orthogonal to the via-rows and propagate along the vertical axis of the structure. The CFN feeds four long slots, without any coupling structure, and provides broadband operation. The final prototype comprises 18 LTCC tapes, with a total thickness of 3.4 mm. The measured -10-dB impedance bandwidth spans from 51.2 to 66 GHz (>25.2%). The module generates a fixed broadside beam, but multibeam operation in H-plane can be easily achieved. In the 50-66-GHz band, the peak gain is 14.25 dBi and the average first side-lobe level in H-plane is -20.6 dB. The proposed technology and the design concept are suited for highly integrated millimeter-wave systems, such as access points in the future V-band high data-rate wireless networks. © 1963-2012 IEEE.
Databáze: OpenAIRE