Sensitivity of the NEXT experiment to Xe-124 double electron capture

Autor: C.M.B. Monteiro, J.F.C.A. Veloso, G. Díaz, E.D.C. Freitas, B. Palmeiro, Y. Rodriguez Garcia, R. Weiss-Babai, J. Muñoz Vidal, F.P. Santos, Saunab Ghosh, Sandra K. Johnston, J.T. White, F. Ballester, J. Renner, Lior Arazi, J. Generowicz, A.B. Redwine, P. Herrero, V. Herrero, G. Martínez-Lema, J.M. Benlloch-Rodríguez, Paola Ferrario, A. Goldschmidt, J. Hauptman, L. Ripoll, B. J. P. Jones, J. S. Díaz, M. Martínez-Vara, P. Novella, F. Monrabal, J. Martín-Albo, J.J. Gómez-Cadenas, I.J. Arnquist, N. López-March, C.D.R. Azevedo, Kevin Bailey, A.D. McDonald, C. Adams, N. Byrnes, J. Torrent, Jose Repond, M. Kekic, S. Riordan, E. Church, R.D.P. Mano, T. Contreras, M. Querol, Javier Pérez, J.V. Carrión, C. Romo-Luque, L.M.P. Fernandes, B. Romeo, C. Sofka, C.A.O. Henriques, F.J. Mora, J.A. Hernando Morata, K. Woodruff, Jose A. Rodriguez, D. González-Díaz, L. Rogers, A. Usón, Marta Losada, C.A.N. Conde, Luis Labarga, T.M. Stiegler, A. Para, Víctor H. Alvarez, D. R. Nygren, F.I.G.M. Borges, A. Laing, J. Haefner, A. Simón, N. Yahlali, M. Sorel, A.F.M. Fernandes, P. Lebrun, S. Cebrián, Ana Martínez, A.L. Ferreira, Romain Esteve, R. C. Webb, M. Diesburg, R. Guenette, J. Escada, J.F. Toledo, S. Cárcel, K. Hafidi, J.M.F. dos Santos, Y. Ifergan, R. Felkai, Roberto Gutiérrez
Přispěvatelé: UAM. Departamento de Física Teórica
Rok vydání: 2021
Předmět:
Nuclear and High Energy Physics
Physics - Instrumentation and Detectors
Electron capture
Dark Matter and Double Beta Decay
Extrapolation
FOS: Physical sciences
chemistry.chemical_element
Electrons
Electron
01 natural sciences
7. Clean energy
Atomic
High Energy Physics - Experiment
TECNOLOGIA ELECTRONICA
Nuclear physics
High Energy Physics - Experiment (hep-ex)
Xenon
Particle and Plasma Physics
Double beta decay
0103 physical sciences
Nuclear Matrix
Nuclear
Sensitivity (control systems)
Nuclear Experiment (nucl-ex)
010306 general physics
Nuclear Experiment
Mathematical Physics
Physics
Quantum Physics
Isotope
010308 nuclear & particles physics
Raigs beta -- Desintegració
Detector
Física
Molecular
Detectors
Instrumentation and Detectors (physics.ins-det)
Beta Decay
Nuclear & Particles Physics
chemistry
13. Climate action
Beta rays -- Decay
Zdroj: Journal of High Energy Physics, vol 2021, iss 2
Zaguán: Repositorio Digital de la Universidad de Zaragoza
Universidad de Zaragoza
Journal of High Energy Physics
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
Biblos-e Archivo. Repositorio Institucional de la UAM
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
Journal of High Energy Physics, 2021, art.núm. 203
Articles publicats (D-EMCI)
DUGiDocs – Universitat de Girona
Popis: [EN] Double electron capture by proton-rich nuclei is a second-order nuclear process analogous to double beta decay. Despite their similarities, the decay signature is quite di erent, potentially providing a new channel to measure the hypothesized neutrinoless mode of these decays. The Standard-Model-allowed two-neutrino double electron capture has been predicted for a number of isotopes, but only observed in 78Kr, 130Ba and, recently, 124Xe. The sensitivity to this decay establishes a benchmark for the ultimate experimental goal, namely the potential to discover also the lepton-number-violating neutrinoless version of this process. Here we report on the current sensitivity of the NEXT-White detector to 124Xe 2 ECEC and on the extrapolation to NEXT-100. Using simulated data for the 2 ECEC signal and real data from NEXT-White operated with 124Xe-depleted gas as background, we de ne an optimal event selection that maximizes the NEXT-White sensitivity. We estimate that, for NEXT-100 operated with xenon gas isotopically enriched with 1 kg of 124Xe and for a 5-year run, a sensitivity to the two-neutroni double electron capture half-life of 6x10exp22 years (at 90% con dence level) or better can be reached.
The NEXT collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad and the Ministerio de Ciencia, Innovacion y Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program grants SEV-2014-0398 and CEX2018-000867-S, and the Maria de Maeztu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014, under project UID/FIS/04559/2013 to fund the activities of LIBPhys, and under grants PD/BD/105921/2014, SFRH/BPD/109180/2015 and SFRH/BPD/76842/2011; the U.S. Department of Energy under contracts number DE-AC02-06CH11357 (Argonne National Laboratory), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0019223/DE-SC0019054 (University of Texas at Arlington); and the University of Texas at Arlington. DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC-2015-18820. We also warmly acknowledge the Laboratori Nazionali del Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coating of various parts of the NEXT-White TPC. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment
Databáze: OpenAIRE