Transcription factor MrpC binds to promoter regions of hundreds of developmentally-regulated genes in Myxococcus xanthus
Autor: | David Kroos, Bongjun Son, Lee Kroos, Mark Robinson |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
DNA
Bacterial Myxococcus xanthus Chromatin Immunoprecipitation Repressor Plasma protein binding Cooperative DNA binding Protein kinase 03 medical and health sciences FruA Bacterial Proteins Untranslated Regions Consensus Sequence Consensus sequence Genetics MrpC Binding site Promoter Regions Genetic Gene Transcription factor 030304 developmental biology 0303 health sciences Binding Sites biology 030306 microbiology Gene Expression Regulation Bacterial Sequence Analysis DNA biology.organism_classification Recombinant Proteins Cell biology Gene regulation ChIP-seq Sporulation Fruiting body Chromatin immunoprecipitation Biotechnology Research Article Protein Binding Transcription Factors |
Zdroj: | BMC Genomics |
ISSN: | 1471-2164 |
Popis: | Background Myxococcus xanthus is a bacterium that undergoes multicellular development when starved. Cells move to aggregation centers and form fruiting bodies in which cells differentiate into dormant spores. MrpC appears to directly activate transcription of fruA, which also codes for a transcription factor. Both MrpC and FruA are crucial for aggregation and sporulation. The two proteins bind cooperatively in promoter regions of some developmental genes. Results Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and bioinformatic analysis of cells that had formed nascent fruiting bodies revealed 1608 putative MrpC binding sites. These sites included several known to bind MrpC and they were preferentially distributed in likely promoter regions, especially those of genes up-regulated during development. The up-regulated genes include 22 coding for protein kinases. Some of these are known to be directly involved in fruiting body formation and several negatively regulate MrpC accumulation. Our results also implicate MrpC as a direct activator or repressor of genes coding for several transcription factors known to be important for development, for a major spore protein and several proteins important for spore formation, for proteins involved in extracellular A- and C-signaling, and intracellular ppGpp-signaling during development, and for proteins that control the fate of other proteins or play a role in motility. We found that the putative MrpC binding sites revealed by ChIP-seq are enriched for DNA sequences that strongly resemble a consensus sequence for MrpC binding proposed previously. MrpC2, an N-terminally truncated form of MrpC, bound to DNA sequences matching the consensus in all 11 cases tested. Using longer DNA segments containing 15 of the putative MrpC binding sites from our ChIP-seq analysis as probes in electrophoretic mobility shift assays, evidence for one or more MrpC2 binding site was observed in all cases and evidence for cooperative binding of MrpC2 and FruA was seen in 13 cases. Conclusions We conclude that MrpC and MrpC2 bind to promoter regions of hundreds of developmentally-regulated genes in M. xanthus, in many cases cooperatively with FruA. This binding very likely up-regulates protein kinases, and up- or down-regulates other proteins that profoundly influence the developmental process. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1123) contains supplementary material, which is available to authorized users. |
Databáze: | OpenAIRE |
Externí odkaz: |