Microbial metabolism. Part 12. Isolation, characterization and bioactivity evaluation of eighteen microbial metabolites of 4'-hydroxyflavanone
Autor: | Wimal Herath, Ikhlas A. Khan, Julie Rakel Mikell |
---|---|
Rok vydání: | 2011 |
Předmět: |
Magnetic Resonance Spectroscopy
medicine.drug_class Metabolite Flavonoid Molecular Conformation Beauveria bassiana Bassiana Microbial Sensitivity Tests chemistry.chemical_compound Drug Discovery medicine Food science Beauveria Cunninghamella echinulata Cunninghamella chemistry.chemical_classification Flavonoids biology Fungi General Chemistry General Medicine biology.organism_classification chemistry Biochemistry Mucor Fermentation Flavanones Saccharomycetales Antiprotozoal Flavanone |
Zdroj: | Chemicalpharmaceutical bulletin. 59(6) |
ISSN: | 1347-5223 |
Popis: | Fermentation of 4′-hydroxyflavanone (1) with fungal cultures, Beauveria bassiana (ATCC 13144 and ATCC 7159) yielded 6,3′,4′-trihydroxyflavanone (2), 3′,4′-dihydroxyflavanone 6-O-β-D-4-methoxyglucopyranoside (3), 4′-hydroxyflavanone 3′-sulfate (4), 6,4′-dihydroxyflavanone 3′-sulfate (5) and 4′-hydroxyflavanone 6-O-β-D-4-methoxyglucopyranoside (7). B. bassiana (ATCC 13144) and B. bassiana (ATCC 7159) in addition, gave one more metabolite each, namely, flavanone 4′-O-β-D-4-methoxyglucopyranoside (6) and 6,4′-dihydroxyflavanone (8) respectively. Cunninghamella echinulata (ATCC 9244) transformed 1 to 6,4′-dihydroxyflavanone (8), flavanone-4′-O-β-D-glucopyranoside (9), 3′-hydroxyflavanone 4′-sulfate (10), 3′,4′-dihydroxyflavanone (11) and 4′-hydroxyflavanone-3′-O-β-D-glucopyranoside (12). Mucor ramannianus (ATCC 9628) metabolized 1 to 2,4-trans-4′-hydroxyflavan-4-ol (13), 2,4-cis-4′-hydroxyflavan-4-ol (14), 2,4-trans-3′,4′-dihydroxyflavan-4-ol (15), 2,4-cis-3′,4′-dihydroxyflavan-4-ol (16), 2,4-trans-3′-hydroxy-4′-methoxyflavan-4-ol (17), flavanone 4′-O-α-D-6-deoxyallopyranoside (18) and 2,4-cis-4-hydroxyflavanone 4′-O-α-D-6-deoxyallopyranoside (19). Metabolites 13 and 14 were also produced by Ramichloridium anceps (ATCC 15672). The former was also produced by C. echinulata. Structures of the metabolic products were elucidated by means of spectroscopic data. None of the metabolites tested showed antibacterial, antifungal and antiprotozoal activities against selected organisms. |
Databáze: | OpenAIRE |
Externí odkaz: |