Mouse ERG K(+) channel clones reveal differences in protein trafficking and function
Autor: | John W. Kyle, Craig T. January, Sarah P. Concannon, Corey L. Anderson, Sadguna Y. Balijepalli, Jonathan C. Makielski, Evi Lim, Eric C. Lin, Brooke M. Moungey |
---|---|
Rok vydání: | 2014 |
Předmět: |
Pathology
medicine.medical_specialty ERG1 Potassium Channel Mice 129 Strain Time Factors hERG medicine.disease_cause Transfection Membrane Potentials Complementary DNA genetic variability Medicine Animals Humans Genetic Predisposition to Disease Myocytes Cardiac Arrhythmia and Electrophysiology Patch clamp Cloning Molecular mouse Original Research Membrane potential Mutation biology business.industry HEK 293 cells Sequence Analysis DNA 16. Peace & justice Ether-A-Go-Go Potassium Channels Cell biology Transport protein Long QT Syndrome Protein Transport HEK293 Cells Phenotype mERG Animals Newborn long‐QT syndrome biology.protein Cardiology and Cardiovascular Medicine business Ion Channel Gating |
Zdroj: | Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease |
ISSN: | 2047-9980 |
Popis: | Background The mouse ether‐a‐go‐go‐related gene 1a ( mERG 1a, mKCNH 2 ) encodes mERG K + channels in mouse cardiomyocytes. The mERG channels and their human analogue, hERG channels, conduct I Kr . Mutations in hERG channels reduce I Kr to cause congenital long‐QT syndrome type 2, mostly by decreasing surface membrane expression of trafficking‐deficient channels. Three cDNA sequences were originally reported for mERG channels that differ by 1 to 4 amino acid residues ( mERG ‐London, mERG ‐Waterston, and mERG ‐Nie). We characterized these mERG channels to test the postulation that they would differ in their protein trafficking and biophysical function, based on previous findings in long‐QT syndrome type 2. Methods and Results The 3 mERG and hERG channels were expressed in HEK293 cells and neonatal mouse cardiomyocytes and were studied using Western blot and whole‐cell patch clamp. We then compared our findings with the recent sequencing results in the Welcome Trust Sanger Institute Mouse Genomes Project (WTSIMGP). Conclusions First, the mERG ‐London channel with amino acid substitutions in regions of highly ordered structure is trafficking deficient and undergoes temperature‐dependent and pharmacological correction of its trafficking deficiency. Second, the voltage dependence of channel gating would be different for the 3 mERG channels. Third, compared with the WTSIMGP data set, the mERG ‐Nie clone is likely to represent the wild‐type mouse sequence and physiology. Fourth, the WTSIMGP analysis suggests that substrain‐specific sequence differences in mERG are a common finding in mice. These findings with mERG channels support previous findings with hERG channel structure–function analyses in long‐QT syndrome type 2, in which sequence changes in regions of highly ordered structure are likely to result in abnormal protein trafficking. |
Databáze: | OpenAIRE |
Externí odkaz: |