AI-Augmented Multi Function Radar Engineering with Digital Twin: Towards Proactivity

Autor: Thomas Carpentier, Frédéric Barbaresco, Mathieu Klein, Florence Aligne, Rami Kassab, Yann Semet, Eric Jeanclaude, Yann Briheche, Nico de Bruijn, Konstantinos Varelas
Přispěvatelé: Thales LAS France, Randomized Optimisation (RANDOPT ), Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Thales Research and Technology [Palaiseau], THALES, THALES [France]
Rok vydání: 2020
Předmět:
Signal Processing (eess.SP)
FOS: Computer and information sciences
Computer science
media_common.quotation_subject
Real-time computing
02 engineering and technology
law.invention
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Computer Science - Robotics
Digital Twin
0203 mechanical engineering
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
law
Artificial Intelligence
0202 electrical engineering
electronic engineering
information engineering

FOS: Electrical engineering
electronic engineering
information engineering

Waveform
Leverage (statistics)
Electrical Engineering and Systems Science - Signal Processing
Radar
Function (engineering)
media_common
020301 aerospace & aeronautics
Multi-Mission Radar
Black-Box Optimization
Mode (statistics)
020206 networking & telecommunications
Proactivity
Proactive Radar
[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO]
[INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
Mixed-Integer Programming
Augmented Engineering
Robotics (cs.RO)
Zdroj: 2020 IEEE International Radar Conference
2020 IEEE International Radar Conference, Sep 2020, Florence, Italy
DOI: 10.48550/arxiv.2006.12384
Popis: International audience; Thales new generation digital multi-missions radars, fully-digital and software-defined, like the Sea Fire and Ground Fire radars, benefit from a considerable increase of accessible degrees of freedoms to optimally design their operational modes. To effectively leverage these design choices and turn them into operational capabilities, it is necessary to develop new engineering tools, using artificial intelligence. Innovative optimization algorithms in the discrete and continuous domains, coupled with a radar Digital Twins, allowed construction of a generic tool for "search" mode design (beam synthesis, waveform and volume grid) compliant with the available radar time budget. The high computation speeds of these algorithms suggest tool application in a "Proactive Radar" configuration, which would dynamically propose to the operator, operational modes better adapted to environment, threats and the equipment failure conditions.
Databáze: OpenAIRE