Beyond correlation: acoustic transformation methods for the experimental study of emotional voice and speech
Autor: | Laura Rachman, Pablo Arias, Jean-Julien Aucouturier, Marco Liuni |
---|---|
Přispěvatelé: | Sciences et Technologies de la Musique et du Son (STMS), Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Perception et design sonores (STMS-PDS), Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Alta Voce SAS |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Social Psychology
Speech recognition [SCCO.NEUR]Cognitive science/Neuroscience 05 social sciences Experimental and Cognitive Psychology 01 natural sciences 050105 experimental psychology Correlation Transformation (function) Arts and Humanities (miscellaneous) [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing 0103 physical sciences [INFO.INFO-SD]Computer Science [cs]/Sound [cs.SD] [SCCO.PSYC]Cognitive science/Psychology 0501 psychology and cognitive sciences Psychology 010301 acoustics Commodity (Marxism) Analysis method ComputingMilieux_MISCELLANEOUS |
Zdroj: | Emotion Review Emotion Review, 2020, ⟨10.1177/1754073920934544⟩ |
DOI: | 10.1177/1754073920934544⟩ |
Popis: | While acoustic analysis methods have become a commodity in voice emotion research, experiments that attempt not only to describe but to computationally manipulate expressive cues in emotional voice and speech have remained relatively rare. We give here a nontechnical overview of voice-transformation techniques from the audio signal-processing community that we believe are ripe for adoption in this context. We provide sound examples of what they can achieve, examples of experimental questions for which they can be used, and links to open-source implementations. We point at a number of methodological properties of these algorithms, such as being specific, parametric, exhaustive, and real-time, and describe the new possibilities that these open for the experimental study of the emotional voice. |
Databáze: | OpenAIRE |
Externí odkaz: |