Homogenization of saturated double porous media with Eshelby-like velocity field
Autor: | Emma Lanoye, Luc Dormieux, Wanqing Shen, Djimedo Kondo |
---|---|
Přispěvatelé: | Université de Lille, Sciences et Technologies, Laboratoire de Mécanique de Lille - FRE 3723 (LML), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), Modélisation et expérimentation multi-échelle pour les solides hétérogènes (multi-échelle), Laboratoire Navier (navier umr 8205), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC), Institut Jean le Rond d'Alembert (DALEMBERT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Materials science
Mechanics Strain rate Homogenization (chemistry) [SPI]Engineering Sciences [physics] Geophysics Classical mechanics Limit analysis saturated double porous materials kmacroscopic strength kplastic compressibility kEshelby-like velocity fields kDrucker-Prager solids Vector field Boundary value problem Porosity Porous medium Microscale chemistry |
Zdroj: | Acta Geophysica Acta Geophysica, De Gruyter Open, 2014, 62 (5), pp.1146-1162. ⟨10.2478/s11600-014-0231-8⟩ Acta Geophysica, 2014, 62 (5), pp.1146-1162. ⟨10.2478/s11600-014-0231-8⟩ |
ISSN: | 1895-6572 1895-7455 |
Popis: | International audience; In this paper, we focus on strength properties of double porous materials having a Drucker-Prager solid phase at microscale. The porosity consists in two populations of micropores and mesopores saturated with different pressures. To this end, we consider a hollow sphere subjected to a uniform strain rate boundary conditions. For the microscale to mesoscale transition, we take advantage of available results by Maghous et al. (2009), while the meso to macro upscaling is performed by implementing a kinematical limit analysis approach using Eshelby-like trial velocity fields. This two-step homogenization procedure delivers analytical expression of the macroscopic criterion for the considered class of saturated double porous media. This generalizes and improves previous results established by Shen et al. (2014). The results are discussed in terms of the existence or not of effective stresses. Some illustrations are provided. |
Databáze: | OpenAIRE |
Externí odkaz: |