Doubly nonlinear stochastic evolution equations

Autor: Ulisse Stefanelli, Luca Scarpa
Rok vydání: 2020
Předmět:
Zdroj: Mathematical models and methods in applied sciences 30 (2020): 991–1031. doi:10.1142/S0218202520500219
info:cnr-pdr/source/autori:L. Scarpa and U. Stefanelli/titolo:Doubly nonlinear stochastic evolution equations/doi:10.1142%2FS0218202520500219/rivista:Mathematical models and methods in applied sciences/anno:2020/pagina_da:991/pagina_a:1031/intervallo_pagine:991–1031/volume:30
ISSN: 1793-6314
0218-2025
DOI: 10.1142/s0218202520500219
Popis: We present an existence theory for martingale and strong solutions to doubly nonlinear evolution equations in a separable Hilbert space in the form $$d(Au) + Bu\,dt \ni F(u)\,dt + G(u)\,dW$$ where both $A$ and $B$ are maximal monotone operators, possibly multivalued, $F$ and $G$ are Lipschitz-continuous, and $W$ is a cylindrical Wiener process. Via regularization and passage-to-the-limit we show the existence of martingale solutions. The identification of the limit is obtained by a lower-semicontinuity argument based on a suitably generalized It\^o's formula. If either $A$ or $B$ is linear and symmetric, existence and uniqueness of strong solutions follows. Eventually, several applications are discussed, including doubly nonlinear stochastic Stefan-type problems.
Comment: 34 pages
Databáze: OpenAIRE