Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality

Autor: Christian Weisstanner, Andreas Arnold, Christof Stieger, Christoph Zubler, Claude Nauer, Pascal Senn
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Neuroradiology, Vol. 54, No 3 (2012) pp. 247-254
Nauer, Claude; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas (2012). Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality. Neuroradiology, 54(3), pp. 247-54. Berlin: Springer-Verlag 10.1007/s00234-011-0961-0
ISSN: 0028-3940
DOI: 10.7892/boris.4554
Popis: Introduction: The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Methods: Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Results: Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = −0.94/−0.88) and was highest at 80kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80kV. However, image quality improvement was most relevant for low-dose scans. Conclusions: Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols
Databáze: OpenAIRE