Ground state of a magnetic nonlinear Choquard equation

Autor: Gilberto A. Pereira, Hamilton Bueno, Guido G. Mamani
Rok vydání: 2018
Předmět:
DOI: 10.48550/arxiv.1805.06551
Popis: We consider the stationary magnetic nonlinear Choquard equation \[-(\nabla+iA(x))^2u+ V(x)u=\bigg(\frac{1}{|x|^{\alpha}}*F(|u|)\bigg)\frac{f(|u|)}{|u|}{u},\] where $A: \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ is a vector potential, $V$ is a scalar potential, $f\colon\mathbb{R}\to\mathbb{R}$ and $F$ is the primitive of $f$. Under mild hypotheses, we prove the existence of a ground state solution for this problem. We also prove a simple multiplicity result by applying Ljusternik-Schnirelmann methods.
Comment: 11 pages
Databáze: OpenAIRE