Hyperbolic manifolds containing high topological index surfaces
Autor: | Marion Campisi, Matt Rathbun |
---|---|
Rok vydání: | 2018 |
Předmět: |
Surface (mathematics)
General Mathematics 010102 general mathematics Hyperbolic manifold Boundary (topology) Geometric Topology (math.GT) Mathematics::Geometric Topology 01 natural sciences Complement (complexity) Combinatorics Mathematics - Geometric Topology Topological index 0103 physical sciences FOS: Mathematics Graph (abstract data type) 010307 mathematical physics 0101 mathematics Complement graph Distance Mathematics |
Zdroj: | Pacific Journal of Mathematics. 296:305-319 |
ISSN: | 0030-8730 |
DOI: | 10.2140/pjm.2018.296.305 |
Popis: | If a graph is in bridge position in a 3-manifold so that the graph complement is irreducible and boundary irreducible, we generalize a result of Bachman and Schleimer to prove that the complexity of a surface properly embedded in the complement of the graph bounds the graph distance of the bridge surface. We use this result to construct, for any natural number $n$, a hyperbolic manifold containing a surface of topological index $n$. Comment: 12 pages |
Databáze: | OpenAIRE |
Externí odkaz: |