Hyperbolic manifolds containing high topological index surfaces

Autor: Marion Campisi, Matt Rathbun
Rok vydání: 2018
Předmět:
Zdroj: Pacific Journal of Mathematics. 296:305-319
ISSN: 0030-8730
DOI: 10.2140/pjm.2018.296.305
Popis: If a graph is in bridge position in a 3-manifold so that the graph complement is irreducible and boundary irreducible, we generalize a result of Bachman and Schleimer to prove that the complexity of a surface properly embedded in the complement of the graph bounds the graph distance of the bridge surface. We use this result to construct, for any natural number $n$, a hyperbolic manifold containing a surface of topological index $n$.
Comment: 12 pages
Databáze: OpenAIRE