Analytical solution of the local fractional Klein-Gordon equation for generalized Hulthen potential
Autor: | Fevzi Büyükkiliç, Ahmet Doğan Demirhan, H. Karayer |
---|---|
Přispěvatelé: | Ege Üniversitesi |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Physics
010308 nuclear & particles physics General Physics and Astronomy Local fractional Klein-Gordon equation generalized Hulthen potential 01 natural sciences Local fractional Klein-Gordon equation conformable fractional calculus conformable fractional Nikiforov-Uvarov method generalized Hulthen potential symbols.namesake 0103 physical sciences conformable fractional calculus symbols 010306 general physics conformable fractional Nikiforov-Uvarov method Klein–Gordon equation Mathematical physics |
Zdroj: | Volume: 41, Issue: 6 551-559 Turkish Journal of Physics |
ISSN: | 1300-0101 1303-6122 |
Popis: | WOS: 000431263900009 The one-dimensional Klein Gordon (KG) equation is investigated in the domain of conformable fractional calculus for one-dimensional scalar potential, namely generalized Hulthen potential. The conformable fractional calculus is based on conformable fractional derivative, which is the most natural definition in noninteger order calculus. Fractional order differential equations can be solved analytically by means of this derivative operator. We obtained exact eigenvalue and eigenfunction solutions of the local fractional KG equation and investigated the evolution of relativistic effects in correspondence with the fractional order. |
Databáze: | OpenAIRE |
Externí odkaz: |