Community responses of aquatic insects in paddy mesocosms to repeated exposures of the neonicotinoids imidacloprid and dinotefuran
Autor: | Daisuke Hayasaka, Koya Hashimoto, Koji Kobashi |
---|---|
Rok vydání: | 2018 |
Předmět: |
Aquatic Organisms
Insecta Odonata Health Toxicology and Mutagenesis Population 0211 other engineering and technologies 02 engineering and technology 010501 environmental sciences Biology 01 natural sciences Guanidines Dinotefuran Chironomidae Toxicology chemistry.chemical_compound Neonicotinoids Soil Imidacloprid Aquatic insect Animals education Nymph Ecosystem 0105 earth and related environmental sciences 021110 strategic defence & security studies Larva education.field_of_study Public Health Environmental and Occupational Health Aquatic animal Oryza General Medicine Pesticide Nitro Compounds Pollution Coleoptera chemistry Wetlands Water Pollutants Chemical |
Zdroj: | Ecotoxicology and environmental safety. 175 |
ISSN: | 1090-2414 |
Popis: | Pesticides are one of major threats to wetland environments and their communities, and thus the information about ecological impact assessment of agro-chemicals on ecosystems is essential for future effective pesticides management. Here, effects of the yearly application of two neonicotinoids, imidacloprid and dinotefuran on aquatic insect communities of experimental rice fields were assessed during two years of monitoring. Both neonicotinoid-treated fields and controls were monitored biweekly throughout the 5-month experimental period until harvest (late October) in each year. Maximum concentrations of imidacloprid (157.5 μg/l in 2014 and 138.0 μg/l in 2015) and dinotefuran (10.54 μg/l in 2014 and 54.05 μg/l in 2015) in water were relatively similar in both years, but maximum residues of imidacloprid (245.45 μg/kg) and dinotefuran (419.5 μg/kg) in the sediment in the second-year were 18 and 175 times higher than in the first year, respectively, with great variability of concentrations among sampling dates. In addition, remaining soil residues of both neonicotinoids were approximately 1 μg/kg (ppb) at the start of the second-year. A total of 6265 individuals of 18 aquatic species belonging to 7 orders were collected. No differences in the number of species between controls and the two neonicotinoids-treated paddies were found between years. However, clear differences in community structures of aquatic insects among the imidacloprid- and dinotefuran-treated mesocosms, and controls and between years were shown by PRC analysis. In particular, imidacloprid likely decreased Crocothemisia servilia mariannae nymphs, Chironominae spp. larvae, and Aedes albopictus larvae, whereas dinotefuran tended to decrease Guignotus japonicus, Orthetrum albistylum speciosum nymphs, and Tubiificidae spp. In addition, long-living species of Coleoptera and Odonata were most sensitive to both neonicotinoids. Changes in composition of feeding functional groups (FFGs) of aquatic insects were more prominent in the first year and became subtler in the second year. One of the possibilities of this phenomenon may be functional redundancy in which species that had low sensitivity to imidacloprid and dinotefuran replaced the vacant niche caused by decreases of other species with high susceptibility within the same feeding functions, although further studies are needed to verify this explanation. Thus, feeding functional traits can be a good indicator for evaluation of changes in ecosystem processes under pesticides exposures. Consequently, the current study emphasized that more realistic prediction of community properties after the repeated application of agrochemicals in successive years should consider for 1) long-term population monitoring, 2) cumulative effects at least over the years, and 3) species' functional traits. |
Databáze: | OpenAIRE |
Externí odkaz: |