Can activated titanium interbody cages accelerate or enhance spinal fusion? a review of the literature and a design for clinical trials
Autor: | Nathaniel Toop, Connor Gifford, Rouzbeh Motiei-Langroudi, Arghavan Farzadi, Daniel Boulter, Reza Forghani, H. Francis Farhadi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Titanium
Clinical Trials as Topic Lumbar Vertebrae Biomedical Engineering Biophysics Bioengineering Prostheses and Implants Prosthesis Design Biomaterials Spinal Fusion Coated Materials Biocompatible Osseointegration Clinical Applications of Biomaterials Bone Substitutes TA401-492 Medical technology Animals Humans R855-855.5 Materials of engineering and construction. Mechanics of materials |
Zdroj: | Journal of Materials Science: Materials in Medicine, Vol 33, Iss 1, Pp 1-7 (2021) Journal of Materials Science. Materials in Medicine |
ISSN: | 1573-4838 0957-4530 |
Popis: | While spinal interbody cage options have proliferated in the past decade, relatively little work has been done to explore the comparative potential of biomaterial technologies in promoting stable fusion. Innovations such as micro-etching and nano-architectural designs have shown purported benefits in in vitro studies, but lack clinical data describing their optimal implementation. Here, we critically assess the pre-clinical data supportive of various commercially available interbody cage biomaterial, topographical, and structural designs. We describe in detail the osteointegrative and osteoconductive benefits conferred by these modifications with a focus on polyetheretherketone (PEEK) and titanium (Ti) interbody implants. Further, we describe the rationale and design for two randomized controlled trials, which aim to address the paucity of clinical data available by comparing interbody fusion outcomes between either PEEK or activated Ti lumbar interbody cages. Utilizing dual-energy computed tomography (DECT), these studies will evaluate the relative implant-bone integration and fusion rates achieved by either micro-etched Ti or standard PEEK interbody devices. Taken together, greater understanding of the relative osseointegration profile at the implant–bone interface of cages with distinct topographies will be crucial in guiding the rational design of further studies and innovations. |
Databáze: | OpenAIRE |
Externí odkaz: |