Tau functions, Prym-Tyurin classes and loci of degenerate differentials
Autor: | Dmitry Korotkin, Adrien Sauvaget, Peter Zograf |
---|---|
Přispěvatelé: | Institut National des Sciences Mathématiques et de leurs Interactions (INSMI), Analyse, Géométrie et Modélisation (AGM - UMR 8088), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY) |
Rok vydání: | 2019 |
Předmět: |
14F10
Mathematics - Differential Geometry Pure mathematics cyclic covers Divisor General Mathematics Picard group Holomorphic function Algebraic geometry 14H70 01 natural sciences Mathematics - Algebraic Geometry symbols.namesake Mathematics::Algebraic Geometry integrable systems Genus (mathematics) n-differentials 0103 physical sciences FOS: Mathematics 2018. 2010 Mathematics Subject Classification. 14H15 Ramanujan tau function 0101 mathematics Algebraic Geometry (math.AG) Mathematics November 11 14C22 Moduli space of curves 010102 general mathematics Zero (complex analysis) Bergman tau function 16. Peace & justice 14H15 14F10 14H70 30F30 14C22 30F30 Moduli space Differential Geometry (math.DG) [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] symbols [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] 010307 mathematical physics |
Zdroj: | Mathematische Annalen Mathematische Annalen, Springer Verlag, 2019, 375 (1-2), pp.213-246. ⟨10.1007/s00208-019-01836-1⟩ |
ISSN: | 1432-1807 0025-5831 |
DOI: | 10.1007/s00208-019-01836-1 |
Popis: | We study the rational Picard group of the projectivized moduli space of holomorphic n-differentials on complex genus g stable curves. We define (n - 1) natural classes in this Picard group that we call Prym-Tyurin classes. We express these classes as linear combinations of boundary divisors and the divisor of n-differentials with a double zero. We give two different proofs of this result, using two alternative approaches: an analytic approach that involves the Bergman tau function and its vanishing divisor and an algebro-geometric approach that involves cohomological computations on the universal curve. 26 pages, 1 figure, comments are welcome |
Databáze: | OpenAIRE |
Externí odkaz: |