Improved Ensemble Learning for Wind Turbine Main Bearing Fault Diagnosis

Autor: Olga Porro, Jose Sepulveda, Mattia Beretta, Jordi Cusidó, Yolanda Vidal
Přispěvatelé: Universitat Politècnica de Catalunya. Doctorat en Enginyeria Ambiental, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Projectes i de la Construcció, Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Technology
main bearing
Computer science
QH301-705.5
Real SCADA data
QC1-999
Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC]
real SCADA data
ComputerApplications_COMPUTERSINOTHERSYSTEMS
Fault (power engineering)
Turbine
Aerogeneradors
SCADA
Wind turbines
General Materials Science
Biology (General)
Instrumentation
QD1-999
Fluid Flow and Transfer Processes
Wind power
Artificial neural network
fault prognosis
WT
business.industry
Process Chemistry and Technology
Physics
General Engineering
Main bearing
Engineering (General). Civil engineering (General)
Ensemble learning
Computer Science Applications
Reliability engineering
SCADA (Programes d'ordinador)
Fault prognosis
Chemistry
Anomaly detection
Energies::Energia eòlica [Àrees temàtiques de la UPC]
normality model
TA1-2040
business
Zdroj: Applied Sciences, Vol 11, Iss 7523, p 7523 (2021)
Applied Sciences
Volume 11
Issue 16
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 2076-3417
Popis: The goal of this paper is to develop, implement, and validate a methodology for wind turbines’ main bearing fault prediction based on an ensemble of an artificial neural network (normality model designed at turbine level) and an isolation forest (anomaly detection model designed at wind park level) algorithms trained only on SCADA data. The normal behavior and the anomalous samples of the wind turbines are identified and several interpretable indicators are proposed based on the predictions of these algorithms, to provide the wind park operators with understandable information with enough time to plan operations ahead and avoid unexpected costs. The stated methodology is validated in a real underproduction wind park composed by 18 wind turbines.
Databáze: OpenAIRE