Recovery of Sobolev functions restricted to iid sampling
Autor: | David Krieg, Erich Novak, Mathias Sonnleitner |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Popis: | We study $L_q$-approximation and integration for functions from the Sobolev space $W^s_p(\Omega)$ and compare optimal randomized (Monte Carlo) algorithms with algorithms that can only use iid sample points, uniformly distributed on the domain. The main result is that we obtain the same optimal rate of convergence if we restrict to iid sampling, a common assumption in learning and uncertainty quantification. The only exception is when $p=q=\infty$, where a logarithmic loss cannot be avoided. Comment: 28 pages |
Databáze: | OpenAIRE |
Externí odkaz: |