In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions

Autor: Richard A. Brooker, Joachim Deubener, Louis Hennet, Simone Anzellini, Sara Fanara, Allessandro Longo, Heidy M Mader, Giuseppe La Spina, Olga Shebanova, Nobuyoshi Miyajima, Daniel R. Neuville, Danilo Di Genova, Fabio Arzilli, James W E Drewitt, Emily C. Bamber
Přispěvatelé: Institute of Non-Metallic Materials [Clausthal-Zellerfeld], Clausthal University of Technology (TU Clausthal), School of Earth Sciences [Bristol], University of Bristol [Bristol], Bavarian Research Institute of Experimental Geochemistry and Geophysics (Bayerisches Geoinstitut), Universität Bayreuth, European Synchrotron Radiation Facility (ESRF), Institute of Nanostructured Materials (ISMN-CNR UOS Palermo), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Georg-August-Universität Göttingen = University of Göttingen, DIAMOND Light source, Department of Earth Sciences [Manchester], University of Manchester [Manchester], Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Institute for Nanostructured Materials (CNR-ISMN), Consiglio Nazionale delle Ricerche (CNR), Georg-August-University [Göttingen], Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Science Advances
Science Advances, American Association for the Advancement of Science (AAAS), 2020, 6 (39), pp.eabb0413. ⟨10.1126/sciadv.abb0413⟩
Di Genova, D, Brooker, R A, Mader, H M, Drewitt, J W E, Longo, A, Deubener, J, Neuville, D R, Fanara, S, Shebanova, O, Anzellini, S, Arzilli, F, Bamber, E C, Hennet, L, La Spina, G & Miyajima, N 2020, ' In situ observation of nanolite growth in volcanic melt : A driving force for explosive eruptions ', Science Advances, vol. 6, no. 39, eabb0413 . https://doi.org/10.1126/sciadv.abb0413
Di Genova, D, Brooker, R A, Mader, H M, Drewitt, J W E, Longo, A, Deubener, J, Neuville, D R, Fanara, S, Shebanova, O, Anzellini, S, Arzilli, F, Bamber, E C, Hennet, L, La Spina, G & Miyajima, N 2020, ' In situ observation of nanolite growth in volcanic melt : a driving force for explosive eruptions ', Science Advances, vol. 6, no. 39, eabb0413 . https://doi.org/10.1126/sciadv.abb0413
'Science Advances ', vol: 6, pages: eabb0413-1-eabb0413-14 (2020)
ISSN: 2375-2548
Popis: This study shows how a few nanometer-sized crystals markedly increase the viscosity of a magma leading to explosive eruptions.
Although gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>30 volume %) can lock up the magma, triggering an explosion. Here, we present an alternative to this well-established paradigm by showing how an unexpectedly small volume of nano-sized crystals can cause a disproportionate increase in magma viscosity. Our in situ observations on a basaltic melt, rheological measurements in an analog system, and modeling demonstrate how just a few volume % of nanolites results in a marked increase in viscosity above the critical value needed for explosive fragmentation, even for a low-viscosity melt. Images of nanolites from low-viscosity explosive eruptions and an experimentally produced basaltic pumice show syn-eruptive growth, possibly nucleating a high bubble number density.
Databáze: OpenAIRE