The bifurcation measure has maximal entropy

Autor: Thomas Gauthier, Gabriel Vigny, Henry de Thelin
Přispěvatelé: Laboratoire Émile Picard (LEP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 (LAMFA), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
Rok vydání: 2018
Předmět:
Zdroj: Israël Journal of Mathematics
Israël Journal of Mathematics, Hebrew University Magnes Press, 2020, 235 (1), pp.213-243. ⟨10.1007/s11856-019-1955-6⟩
ISSN: 0021-2172
1565-8511
DOI: 10.48550/arxiv.1805.11508
Popis: Let $\Lambda$ be a complex manifold and let $(f_\lambda)_{\lambda\in \Lambda}$ be a holomorphic family of rational maps of degree $d\geq 2$ of $\mathbb{P}^1$. We define a natural notion of entropy of bifurcation, mimicking the classical definition of entropy, by the parametric growth rate of critical orbits. We also define a notion a measure-theoretic bifurcation entropy for which we prove a variational principle: the measure of bifurcation is a measure of maximal entropy. We rely crucially on a generalization of Yomdin's bound of the volume of the image of a dynamical ball. Applying our technics to complex dynamics in several variables, we notably define and compute the entropy of the trace measure of the Green currents of a holomorphic endomorphism of $\mathbb{P}^k$.
Databáze: OpenAIRE