Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB

Autor: Michael Garton, Tracy A. Stone, Philip M. Kim, Kyle Ethan Wang, Charles M. Deber, Satra Nim
Rok vydání: 2018
Předmět:
Zdroj: Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
0027-8424
DOI: 10.1073/pnas.1711837115
Popis: Significance Using D-amino acids as the building blocks for bioactive peptides can dramatically increase their potency. However, simply swapping regular levorotary amino acids for dextrorotary (D)-amino acids alters the peptide surface topology and function is lost. Current methods to overcome this are not generally applicable and exclude the majority of therapeutic targets. By creating a mirror image of all 111,867 protein structures in the Protein Data Bank (PDB), we convert this repository into a D-peptide database with 2.8 million D-peptide structures. This D-PDB can be searched to find therapeutically active topologies, demonstrated here by the discovery of D-peptide GLP1R and PTH1R agonists. Evaluation of D-PDB coverage suggests that it holds candidates for most therapeutic targets and, thus, potentially contains hundreds of potent drug leads.
Biologics are a rapidly growing class of therapeutics with many advantages over traditional small molecule drugs. A major obstacle to their development is that proteins and peptides are easily destroyed by proteases and, thus, typically have prohibitively short half-lives in human gut, plasma, and cells. One of the most effective ways to prevent degradation is to engineer analogs from dextrorotary (D)-amino acids, with up to 105-fold improvements in potency reported. We here propose a general peptide-engineering platform that overcomes limitations of previous methods. By creating a mirror image of every structure in the Protein Data Bank (PDB), we generate a database of ∼2.8 million D-peptides. To obtain a D-analog of a given peptide, we search the (D)-PDB for similar configurations of its critical—“hotspot”—residues. As a proof of concept, we apply our method to two peptides that are Food and Drug Administration approved as therapeutics for diabetes and osteoporosis, respectively. We obtain D-analogs that activate the GLP1 and PTH1 receptors with the same efficacy as their natural counterparts and show greatly increased half-life.
Databáze: OpenAIRE