Impact of gigahertz and terahertz transport regimes on spin propagation and conversion in the antiferromagnet IrMn
Autor: | O. Gueckstock, R. L. Seeger, T. S. Seifert, S. Auffret, S. Gambarelli, J. N. Kirchhof, K. I. Bolotin, V. Baltz, T. Kampfrath, L. Nádvorník |
---|---|
Jazyk: | angličtina |
Předmět: |
spin conversion
Condensed Matter - Mesoscale and Nanoscale Physics Physics and Astronomy (miscellaneous) antiferromagnet IrMn spin propagation Mesoscale and Nanoscale Physics (cond-mat.mes-hall) 500 Naturwissenschaften und Mathematik::530 Physik::530 Physik FOS: Physical sciences Physics::Optics Condensed Matter::Strongly Correlated Electrons |
Zdroj: | Applied Physics Letters |
ISSN: | 1077-3118 0003-6951 |
DOI: | 10.1063/5.0077868 |
Popis: | Control over spin transport in antiferromagnetic systems is essential for future spintronic applications with operational speeds extending toultrafast time scales. Here, we study the transition from the gigahertz (GHz) to terahertz (THz) regime of spin transport and spin-to-chargecurrent conversion (S2C) in the prototypical antiferromagnet IrMn by employing spin pumping and THz spectroscopy techniques. Wereveal a factor of 4 shorter characteristic propagation lengths of the spin current at THz frequencies (~0.5 nm) as compared to GHzexperiments (~2 nm). This observation may be attributed to different transport regimes. The conclusion is supported by extraction of sub-picosecond temporal dynamics of the THz spin current. We identify no relevant impact of the magnetic order parameter on S2C signals andno scalable magnonic transport in THz experiments. A significant role of the S2C originating from interfaces between IrMn and magnetic ornon-magnetic metals is observed, which is much more pronounced in the THz regime and opens the door for optimization of the spin control at ultrafast time scales. |
Databáze: | OpenAIRE |
Externí odkaz: |