Explicit approximation of the wavenumber for lined ducts

Autor: Yves Aurégan, Vincent Pagneux, Maaz Farooqui
Přispěvatelé: Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Admittance
010504 meteorology & atmospheric sciences
Acoustics and Ultrasonics
Transcendental equation
Rotational symmetry
FOS: Physical sciences
Newton Raphson method
01 natural sciences
Physics::Fluid Dynamics
Dispersion function
Arts and Humanities (miscellaneous)
Approximation error
Complex functions
Dispersion relation
0103 physical sciences
Wavenumber
Acoustical properties
010301 acoustics
0105 earth and related environmental sciences
Physics
Numerical analysis
Mathematical analysis
Fluid Dynamics (physics.flu-dyn)
Acoustic wave
Physics - Fluid Dynamics
Computational Physics (physics.comp-ph)
Partial differential equations
[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
Computer Science::Sound
Acoustic wave propagation
Physics - Computational Physics
Acoustic signal processing
Zdroj: Journal of the Acoustical Society of America
Journal of the Acoustical Society of America, Acoustical Society of America, 2018, 144 (3), pp.EL191-EL195. ⟨10.1121/1.5054888⟩
ISSN: 0001-4966
1520-8524
DOI: 10.1121/1.5054888⟩
Popis: For acoustic waves in lined ducts, at given frequencies, the dispersion relation leads to a transcendental equation for the wavenumber that has to be solved by numerical methods. Based on Eckart explicit expression initially derived for water waves, accurate explicit approximations are proposed for the wavenumber of the fundamental mode in lined ducts. While Eckart expression is 5 % accurate, some improved approximations can reach maximum relative error of less than 10 raised to -8. The cases with small dissipation part in the admittance of the liner and/or axisymmetric ducts are also considered.
4 pages, 4 figures, The Journal of the Acoustical Society of America- Express Letter
Databáze: OpenAIRE