The $$\xi $$ ξ -stability on the affine grassmannian
Autor: | Zongbin Chen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Classical group
Pure mathematics Group (mathematics) General Mathematics Mathematical analysis Vector bundle Affine Grassmannian (manifold) Moduli space Condensed Matter::Materials Science Mathematics::Algebraic Geometry Maximal torus Algebraic curve Mathematics::Symplectic Geometry Quotient Mathematics |
Popis: | We introduce a notion of $$\xi $$ ξ -stability on the affine grassmannian $${\fancyscript{X}}$$ X for the classical groups, this is the local version of the $$\xi $$ ξ -stability on the moduli space of Higgs bundles on a curve introduced by Chaudouard and Laumon. We prove that the quotient $${\fancyscript{X}}^{\xi }/T$$ X ξ / T of the stable part $${\fancyscript{X}}^{\xi }$$ X ξ by the maximal torus $$T$$ T exists as an ind- $$k$$ k -scheme, and we introduce a reduction process analogous to the Harder-Narasimhan reduction for vector bundles over an algebraic curve. For the group $${\mathrm {SL}}_{d}$$ SL d , we calculate the Poincaré series of the quotient $${\fancyscript{X}}^{\xi }/T$$ X ξ / T . |
Databáze: | OpenAIRE |
Externí odkaz: |