Optic Disc Detection from Fundus Photography via Best-Buddies Similarity

Autor: Jian Lian, Yunlong He, Weikuan Jia, Yuanjie Zheng, Naiwen Liu, Hou Kangning
Přispěvatelé: Shandong Normal University, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales (MOTIVATE), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Similarity (geometry)
Computer science
detection
02 engineering and technology
Fundus (eye)
optic disc
lcsh:Technology
BBS
030218 nuclear medicine & medical imaging
lcsh:Chemistry
03 medical and health sciences
0302 clinical medicine
0202 electrical engineering
electronic engineering
information engineering

medicine
Calibration
[INFO.INFO-IM]Computer Science [cs]/Medical Imaging
General Materials Science
Computer vision
Instrumentation
Spatial analysis
lcsh:QH301-705.5
ComputingMilieux_MISCELLANEOUS
Fluid Flow and Transfer Processes
template matching
Pixel
medicine.diagnostic_test
business.industry
lcsh:T
Process Chemistry and Technology
Template matching
General Engineering
Fundus photography
lcsh:QC1-999
Computer Science Applications
medicine.anatomical_structure
lcsh:Biology (General)
lcsh:QD1-999
lcsh:TA1-2040
020201 artificial intelligence & image processing
Artificial intelligence
business
lcsh:Engineering (General). Civil engineering (General)
lcsh:Physics
Optic disc
Zdroj: Applied Sciences, Vol 8, Iss 5, p 709 (2018)
Applied Sciences; Volume 8; Issue 5; Pages: 709
Applied Sciences
Applied Sciences, MDPI, 2018, 8 (5), pp.709. ⟨10.3390/app8050709⟩
ISSN: 2076-3417
DOI: 10.3390/app8050709⟩
Popis: Robust and effective optic disc (OD) detection is a necessary processing step in the research work of the automatic analysis of fundus images. In this paper, we propose a novel and robust method for the automated detection of ODs from fundus photographs. It is essentially carried out by performing template matching using the Best-Buddies Similarity (BBS) measure between the hand-marked OD region and the small parts of target images. For well characterizing the local spatial information of fundus images, a gradient constraint term was introduced for computing the BBS measurement. The performance of the proposed method is validated with Digital Retinal Images for Vessel Extraction (DRIVE) and Standard Diabetic Retinopathy Database Calibration Level 1 (DIARETDB1) databases, and quantitative results were obtained. Success rates/error distances of 100%/10.4 pixel and of 97.7%/12.9 pixel, respectively, were achieved. The algorithm has been tested and compared with other commonly used methods, and the results show that the proposed method shows superior performance.
Databáze: OpenAIRE