Optic Disc Detection from Fundus Photography via Best-Buddies Similarity
Autor: | Jian Lian, Yunlong He, Weikuan Jia, Yuanjie Zheng, Naiwen Liu, Hou Kangning |
---|---|
Přispěvatelé: | Shandong Normal University, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales (MOTIVATE), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Similarity (geometry)
Computer science detection 02 engineering and technology Fundus (eye) optic disc lcsh:Technology BBS 030218 nuclear medicine & medical imaging lcsh:Chemistry 03 medical and health sciences 0302 clinical medicine 0202 electrical engineering electronic engineering information engineering medicine Calibration [INFO.INFO-IM]Computer Science [cs]/Medical Imaging General Materials Science Computer vision Instrumentation Spatial analysis lcsh:QH301-705.5 ComputingMilieux_MISCELLANEOUS Fluid Flow and Transfer Processes template matching Pixel medicine.diagnostic_test business.industry lcsh:T Process Chemistry and Technology Template matching General Engineering Fundus photography lcsh:QC1-999 Computer Science Applications medicine.anatomical_structure lcsh:Biology (General) lcsh:QD1-999 lcsh:TA1-2040 020201 artificial intelligence & image processing Artificial intelligence business lcsh:Engineering (General). Civil engineering (General) lcsh:Physics Optic disc |
Zdroj: | Applied Sciences, Vol 8, Iss 5, p 709 (2018) Applied Sciences; Volume 8; Issue 5; Pages: 709 Applied Sciences Applied Sciences, MDPI, 2018, 8 (5), pp.709. ⟨10.3390/app8050709⟩ |
ISSN: | 2076-3417 |
DOI: | 10.3390/app8050709⟩ |
Popis: | Robust and effective optic disc (OD) detection is a necessary processing step in the research work of the automatic analysis of fundus images. In this paper, we propose a novel and robust method for the automated detection of ODs from fundus photographs. It is essentially carried out by performing template matching using the Best-Buddies Similarity (BBS) measure between the hand-marked OD region and the small parts of target images. For well characterizing the local spatial information of fundus images, a gradient constraint term was introduced for computing the BBS measurement. The performance of the proposed method is validated with Digital Retinal Images for Vessel Extraction (DRIVE) and Standard Diabetic Retinopathy Database Calibration Level 1 (DIARETDB1) databases, and quantitative results were obtained. Success rates/error distances of 100%/10.4 pixel and of 97.7%/12.9 pixel, respectively, were achieved. The algorithm has been tested and compared with other commonly used methods, and the results show that the proposed method shows superior performance. |
Databáze: | OpenAIRE |
Externí odkaz: |