From Derrida's random energy model to branching random walks: from 1 to 3

Autor: Marius A. Schmidt, Nicola Kistler
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Electron. Commun. Probab.
Popis: We study the extremes of a class of Gaussian fields with in-built hierarchical structure. The number of scales in the underlying trees depends on a parameter alpha in [0,1]: choosing alpha=0 yields the random energy model by Derrida (REM), whereas alpha=1 corresponds to the branching random walk (BRW). When the parameter alpha increases, the level of the maximum of the field decreases smoothly from the REM- to the BRW-value. However, as long as alpha
12 pages, 1 figure
Databáze: OpenAIRE