Meta-learning from Learning Curves: Challenge Design and Baseline Results
Autor: | Manh Hung Nguyen, Lisheng Sun-Hosoya, Nathan Grinsztajn, Isabelle Guyon |
---|---|
Přispěvatelé: | Chalearn, Université de Lille, Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Scool (Scool), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, TAckling the Underspecified (TAU), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-19-CHIA-0022,HUMANIA,Intelligence Artificielle pour Tous(2019), European Project: 952215,TAILOR(2020) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | IJCNN 2022-International Joint Conference on Neural Networks IJCNN 2022-International Joint Conference on Neural Networks, Jul 2022, Padua, Italy. pp.1-8 |
Popis: | International audience; Meta-learning has been widely studied and implemented in many Automated Machine Learning systems to improve the process of selecting and training Machine Learning models for new tasks, by leveraging expertise acquired on previously observed tasks. We design a novel meta-learning challenge aiming at learning-to-learn from one of the most essential model evaluation data, the learning curve. It consists of multiple model evaluations collected during the process of training. A meta-learner is expected to apply a learned policy to learning curves of partially trained models on the task at hand, to rapidly find the best task solution, without training all potential models to convergence. This implies learning the exploration-exploitation trade-off. Our challenge is split into two phases: a development phase and a final test phase. In each phase, a meta-learner is meta-trained and meta-tested on validation learning curves (development phase) or test learning curves (final test phase). During meta-training, the meta-learner is allowed to learn from the provided learning curves in any possible way. In meta-testing, we borrowed the common Reinforcement Learning setting in which an agent (a meta-learner) learns by interacting with an environment storing pre-computed learning curves. A meta-learner must pay a cost (corresponding to the actual training and testing time) to reveal learning curve information progressively. The meta-learner is evaluated and ranked based on the average area under its learning curves. This challenge was accepted as part of the official selection of WCCI 2022 competitions. |
Databáze: | OpenAIRE |
Externí odkaz: |