Collective many-body bounce in the breathing-mode oscillations of a Tonks-Girardeau gas
Autor: | Y. Y. Atas, Isabelle Bouchoule, Dimitri M. Gangardt, Karen Kheruntsyan |
---|---|
Přispěvatelé: | Australian Research Council [Canberra] (ARC), Laboratoire Charles Fabry / Optique atomique, Laboratoire Charles Fabry (LCF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS), University of Birmingham [Birmingham], Centre of excellence for quantum atom optics (ARC), University of Queensland [Brisbane] |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Physics
Quantum Physics Isentropic process [PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas] Mode (statistics) Non-equilibrium thermodynamics FOS: Physical sciences Mechanics 01 natural sciences 010305 fluids & plasmas Momentum Tonks–Girardeau gas Classical mechanics Quantum Gases (cond-mat.quant-gas) 0103 physical sciences Rectangular potential barrier 010306 general physics Hydrodynamic theory Condensed Matter - Quantum Gases Quantum Physics (quant-ph) ComputingMilieux_MISCELLANEOUS Phase diagram |
Zdroj: | Physical Review A Physical Review A, American Physical Society, 2017, 96 (4), ⟨10.1103/PhysRevA.96.041605⟩ |
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.96.041605⟩ |
Popis: | We analyse the breathing-mode oscillations of a harmonically quenched Tonks-Giradeau (TG) gas using an exact finite-temperature dynamical theory. We predict a striking collective manifestation of impenetrability---a collective many-body bounce effect. The effect, while being invisible in the evolution of the in-situ density profile of the gas, can be revealed through a nontrivial periodic narrowing of its momentum distribution, taking place at twice the rate of the fundamental breathing-mode frequency. We identify physical regimes for observing the many-body bounce and construct the respective nonequilibrium phase diagram as a function of the quench strength and the initial temperature of the gas. We also develop a finite-temperature hydrodynamic theory of the TG gas, wherein the many-body bounce is explained by an increased thermodynamic pressure of the gas during the isentropic compression, which acts as a potential barrier at the inner turning points of the breathing cycle. Comment: 5 pages, 4 figures, and Supplemental Material. arXiv admin note: substantial text overlap with arXiv:1608.08720 |
Databáze: | OpenAIRE |
Externí odkaz: |