Popis: |
Emerging studies have proved that colonic inflammation caused by refractory inflammatory bowel disease (IBD) can initiate the colitis-associated cancer (CAC), but the transition from inflammation to carcinoma is still largely unknown.In this study, mouse colitis and CAC models were established, and the RNA-seq by circRNA microarray was employed to identify the differentially expressed circRNAs and mRNAs in different comparisons (DSS vs. NC and AOM/DSS vs. DSS). The bioinformatics analyses were used to search the common characteristics in mouse colitis and CAC.The K-means clustering algorithm packaged these differential expressed circRNAs into subgroup analysis, and the data strongly implied that mmu_circ_0001109 closely correlated to the pro-inflammatory signals, while mmu_circ_0001845 was significantly associated with the Wnt signalling pathway. Our subsequent data in vivo and in vitro confirmed that mmu_circ_0001109 could exacerbate the colitis by up-regulating the Jak-STAT3 and NF-kappa B signalling pathways, and mmu_circ_0001845 promoted the CAC transformation through the Wnt signalling pathway. By RNA blasting between mice and humans, the human RTEL1- and PRKAR2A-derived circRNAs, which might be considered as homeotic circRNAs of mmu_circ_0001109 and mmu_circ_0001845, respectively, were identified. The clinical data revealed that RTEL1-derived circRNAs had no clinical significance in human IBD and CAC. However, three PRKAR2A-derived circRNAs, which had the high RNA similarities to mmu_circ_0001845, were remarkably up-regulated in CAC tissue samples and promoted the transition from colitis to CAC.Our results suggested that these human PRKAR2A-derived circRNAs could be novel candidates for distinguishing CAC patients and predicted the prognosis of CAC. |