Inner Outer Factorization of Wide Rational Matrix Valued Functions on the Half Plane
Autor: | Frazho, A.E., Ran, A.C.M., Bastos, M. Amélia, Castro, Luís, Karlovich, Alexei Yu. |
---|---|
Přispěvatelé: | Bastos, M. Amélia, Castro, Luís, Karlovich, Alexei Yu., Mathematics |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Frazho, A E & Ran, A C M 2021, Inner Outer Factorization of Wide Rational Matrix Valued Functions on the Half Plane . in M A Bastos, L Castro & A Y Karlovich (eds), Operator Theory, Functional Analysis and Applications . Operator Theory: Advances and Applications, vol. 282, Springer Science and Business Media Deutschland GmbH, pp. 219-233 . https://doi.org/10.1007/978-3-030-51945-2_11 Operator Theory, Functional Analysis and Applications ISBN: 9783030519445 Operator Theory, Functional Analysis and Applications, 219-233 STARTPAGE=219;ENDPAGE=233;TITLE=Operator Theory, Functional Analysis and Applications |
ISSN: | 0255-0156 |
DOI: | 10.1007/978-3-030-51945-2_11 |
Popis: | © 2021, Springer Nature Switzerland AG.The main purpose of this note is to use operator methods to solve a rational inner-outer factorization problem for wide functions. It is believed that this will provide valuable insight into the inner-outer factorization problem. Our approach involves Wiener–Hopf operators, Hankel operators and invariant subspaces for the backward shift. It should be emphasized that the formulas for the inner and outer factor are derived in a computational manner. |
Databáze: | OpenAIRE |
Externí odkaz: |