Compositional and structural analysis of engineered stones and inorganic particles in silicotic nodules of exposed workers
Autor: | Marina G. Pintado-Herrera, José Manuel, José A. López-López, Marcial García-Rojo, Antonio León-Jiménez, Francisco M. Morales, Nieves Maira-González, Daniel Del Castillo-Otero, Antonio Hidalgo-Molina, Pedro Muriel-Cueto, Rafael García |
---|---|
Přispěvatelé: | Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Física de la Materia Condensada, Química Analítica, Química Física |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Adult
Male Engineered stone Pathology medicine.medical_specialty Health Toxicology and Mutagenesis Silicosis Toxicology Artificial stone chemistry.chemical_compound Occupational Exposure RA1190-1270 medicine Humans Quartz agglomerate Volatile organic compounds Lung Inhalation Chemistry Research Progressive massive fibrosis Dust Nodule (medicine) Silica Quartz General Medicine Middle Aged Phenanthrene HD7260-7780.8 Silicon Dioxide medicine.disease Cristobalite medicine.anatomical_structure Toxicology. Poisons Industrial hygiene. Industrial welfare medicine.symptom Aluminum |
Zdroj: | Part Fibre Toxicol 18, 41 (2021) RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz Agencia Estatal de Meteorología (AEMET) Particle and Fibre Toxicology, Vol 18, Iss 1, Pp 1-16 (2021) Particle and Fibre Toxicology |
Popis: | Background Engineered stone silicosis is an emerging disease in many countries worldwide produced by the inhalation of respirable dust of engineered stone. This silicosis has a high incidence among young workers, with a short latency period and greater aggressiveness than silicosis caused by natural materials. Although the silica content is very high and this is the key factor, it has been postulated that other constituents in engineered stones can influence the aggressiveness of the disease. Different samples of engineered stone countertops (fabricated by workers during the years prior to their diagnoses), as well as seven lung samples from exposed patients, were analyzed by multiple techniques. Results The different countertops were composed of SiO2 in percentages between 87.9 and 99.6%, with variable relationships of quartz and cristobalite depending on the sample. The most abundant metals were Al, Na, Fe, Ca and Ti. The most frequent volatile organic compounds were styrene, toluene and m-xylene, and among the polycyclic aromatic hydrocarbons, phenanthrene and naphthalene were detected in all samples. Patients were all males, between 26 and 46 years-old (average age: 36) at the moment of the diagnosis. They were exposed to the engineered stone an average time of 14 years. At diagnosis, only one patient had progressive massive fibrosis. After a follow-up period of 8 ± 3 years, four patients presented progressive massive fibrosis. Samples obtained from lung biopsies most frequently showed well or ill-defined nodules, composed of histiocytic cells and fibroblasts without central hyalinization. All tissue samples showed high proportion of Si and Al at the center of the nodules, becoming sparser at the periphery. Al to Si content ratios turned out to be higher than 1 in two of the studied cases. Correlation between Si and Al was very high (r = 0.93). Conclusion Some of the volatile organic compounds, polycyclic aromatic hydrocarbons and metals detected in the studied countertop samples have been described as causative of lung inflammation and respiratory disease. Among inorganic constituents, aluminum has been a relevant component within the silicotic nodule, reaching atomic concentrations even higher than silicon in some cases. Such concentrations, both for silicon and aluminum showed a decreasing tendency from the center of the nodule towards its frontier. |
Databáze: | OpenAIRE |
Externí odkaz: |