Split Injectivity ofA-Theoretic Assembly Maps

Autor: Christoph Winges, Daniel Kasprowski, Ulrich Bunke
Rok vydání: 2019
Předmět:
Zdroj: International Mathematics Research Notices
ISSN: 1687-0247
1073-7928
DOI: 10.1093/imrn/rnz209
Popis: We construct an equivariant coarse homology theory arising from the algebraic $K$-theory of spherical group rings and use this theory to derive split injectivity results for associated assembly maps. On the way, we prove that the fundamental structural theorems for Waldhausen's algebraic $K$-theory functor carry over to its nonconnective counterpart defined by Blumberg--Gepner--Tabuada.
41 pages
Databáze: OpenAIRE